This department develops crop cultivars and cultivation technologies suitable for individual regions in Hokkaido, breeds livestock animals, develops technologies for livestock husbandry, and carries out research on food safety and biotechnology.

Organizational structure

- Kamikawa Agricultural Experiment Station (Pippu Town)
- Ornamental Plants and Vegetables Research Center (Takikawa City)
- Central Agricultural Experiment Station (Naganuma Town) (Agricultural Research Department)
- Paddy-field Farming Group, Production Research Department, Central Agricultural Experiment Station (Iwamizawa City)
- Central Agricultural Experiment Station (Tenpoku Sub Center, Dain Research Center (Hamatomatsubetsu Town))
- Kitami Agricultural Experiment Station (Kunupp City)
- Paddy-field Farming Group, Production Research Department, Central Agricultural Experiment Station (Kunupp City)
- Dairy Research Center (Nakasatibetsu Town)
- Animal Research Center (Shinotoku Town)
- Donan Agricultural Experiment Station (Hokuto City)

Major current research and development

- Establishment of vegetable production technology using thermostat-equipped, snow-resistant greenhouses that are not heated all year round (Kamikawa Agricultural Experiment Station, Ornamental Plants and Vegetables Research Center, Donan Agricultural Experiment Station) [priority research: 2017 - 2019]
- Establishment of cider production technology using Hokkaido apples and verification for commercialization (Central Agricultural Experiment Station, Food Processing Research Center) [priority research: 2018 - 2020]
- Establishment of a long-term storage and shipping system that enables the supply of Hokkaido melons during winter (Ornamental Plants and Vegetables Research Center) [priority research: 2017 - 2019]
- Construction of a virus spread-preventing technology system to prevent the occurrence of bovine leukosis (Animal Research Center) [priority research: 2017 - 2019]
- Application of map-based controlled fertilization technology to vegetable cultivation using ICT technology (Tokachi Agricultural Experiment Station) [ordinary research: 2017 - 2019]
- Establishment of total mixed ration (TMR) feeding technology for breeding Japanese Black Steers (Animal Research Center) [ordinary research: 2017 - 2018]
- Crop variety development project (rice, wheat, soybeans, adzuki beans, grass, etc.) [ordinary research: 2017 - 2018]
- Research on control measures against Ophiobolus graminis and the development of resistant varieties (Kitami Agricultural Experiment Station) [priority research: 2016 - 2020]

Major recent achievements

- Development of winter wheat growth/management tools it is easy to decide on sowing quantities and nitrogen fertilization rate for the reduction division stage. In that case, the number of stems before wintering and that during wintering period can be utilized for basal fertilization and additional fertilization in which pathogenic virus-carrying insects (Mysia padella) cannot overwinter is created, thereby effectively reducing the occurrence of the disease in the surrounding sugar beet fields.

Processing example of Erimo 167 (jellied bean paste)

- Erimoshou
- Erimo 167
- Kitanootome

Source: Kitahonami Growth/Management Tool Manual Development of winter wheat growth/management tools We have developed NDAS, makIDAS and T-NDAS, tools that make it easy to decide on sowing quantities and nitrogen fertilization design for winter wheat varieties such as Kitahonami, Yumeshikara and Tsurukichi.

Control of Beet Western Yellow Virus

If sugar beets are infected with the disease, their leaves will turn yellow and the sugar content will decrease by approximately 30%. Through appropriate whitening greenhouse control, as an environment in which pathogenic virus-carrying insects (Mysia padella) cannot overwinter is created, thereby effectively reducing the occurrence of the disease in the surrounding sugar beet fields.