イドンナップ岳
（釧路一第56号）
イドンナップ岳
（釧路一第56号）

北海道立地下資源調査所
北海道技師 鈴木 守
同 小山内 熙
同 松井 公平
北海道嘱託 渡辺 順

北海道開発庁
昭和36年3月
この調査は、北海道総合開発の一環である、地下資源開発のための基本調査として、北海道に調査を委託し、道立地下資源調査所において、実施したものである。

昭和36年3月

北海道開発庁
イドンナップ岳の遠望
目次

はしごき.. 1

I 位置および交通.. 1

II 地形 ... 3

III 地質 .. 5

III.1 地質概説.. 5

III.2 堆積岩類.. 7

III.2.1 先白亜系.. 7

III.2.2 白亜系... 14

III.2.3 新第三系.. 22

III.3 変成岩類.. 24

III.3.1 準片岩.. 24

III.3.2 含らんせん石岩... 24

III.3.3 ホルンヘルス.. 25

III.3.4 緑色片岩.. 25

III.3.5 セプタ... ……………… 26

III.4 火成岩類.. 27

III.4.1 スピライト質岩類.. 28

III.4.2 緑色角閃石片状角閃岩およびソーシャル石はんれい岩... 35

III.4.3 褐色角閃石角閃岩... 43

III.4.4 超塩基性岩類.. 43

III.4.5 脈岩類.. 45

III.5 第四系.. 47

III.6 地質構造および地史.. 48

III.6.1 地質構造.. 48

III.6.2 地史.. 51

IV 応用地質.. 55
伊ドンナップ地質図幅および同説明書は、昭和 31 年から昭和 34 年までの 4 年間にわたって、延約 340 日間を費して行なった野外調査結果をとりまとめたものである。

野外調査にあたっては、北海道立地下資源調査所内倉部技師にはコイボクレリチャリ川流域の調査を、同松下勝秀技師にはベンケアブカサンベ川流域とその南部地域の調査を、同齋藤昌之技師にはクロム鉄床を、同三谷勝利技師にはシュベンツ川上流の新第三系の発達する地域の調査を、北海道大学理学部地質学教室の太田昌秀教授には比 Geli 川流域その他一部の地域の調査を、また、静内高等学校の浦野龍一氏にはシュベンツ川地域の一部の調査を、それぞれ協力していただいた。

また、現地においては、北海道電力株式会社上木部工事課および岩清水発電所連絡所の各位から多くの便宜をはかっていただいた。

さらに、この説明書のとりまとめにあたっては、北海道大学理学部地質学教室の舟橋三男助教授および橋本誠二教授から、いろいろの御教示と討論をしていただいた。さらに、橋本教授には資料の化学分析をしていただいた。これらの方々に厚くお礼を申し上げる。

I 位置および交通

この図幅地域は、北緯 42°30'〜42°40'、東経 142°30'〜142°45'の範囲で、日高山脈中部の
第1図 位置，交通図

西側をしめる地域である。行政区画のうえでは，日高支庁の管轄下にあり，図幅地域の西北隅の宿主別川流域は平取町に，新冠川流域は新冠村に，中央部から東側の地域，つまり，シュンペツ川流域からコイボクンピチャリ川流域にかけての地域は静内町に，それぞれ属している。

図幅地域のほとんど全域が険しい山地帯であるために，全く村落はみられない。
この地域にはみごとな原始林が発達している。このため造材事業がさかんに行なわれている。したがって、そのための施設が新冠川やジェンペツ川流域に、敷所建設されている。そして、木材搬出のための林道が各河川にそって敷設されており、さらに奥地へと延長されつつある。また、北海道電力株式会社による高地電源開発計画の進展に伴なって、新冠川上流やジェンペツ川流域に調査道路が開設されている。

このような発電事業の進展にともなって、図幅調査の当初には、全く道らしい道もなかったところさえ、今では自動車道路を通じており、容易に調査ができるようになった。しかし、コイボクシビチャリ川流域には、このような開発道路は開設されていない。

II 地形

図幅地域の大部分は、全く急峻な山地帯から構成されており、この間を流れる河川は急流となって流下している。日高山脈の主稜は、この図幅地域からわずか東側にはずれた位置にあり、この地域には、その出尾根のような形で西に張り出しているナメワッカ岳（1,799.1 m）しか分布していない。図幅地域に分布している山稜は、日高山脈の主稜にほぼ平行な NNW-SSE の配置をとており、2 列の分布がみとめられる。そのうちの 1 列は、図幅地域の中央部に分布しているもので、北から南へ、イドンナップ岳（1,747.8 m）、大山（1,361.0 m）、パンペツ山（1,336.5 m）の順で並んでいる。他の 1 列は、図幅地域の西側にみられ、ピウ岳（1,134.1 m）のほかに 900 m 内外の山稜が分布している。
方，これらの山稜の間は凹地形をつくっており、同じ方向で分布している。これらの配置の形態は、それぞれの地域を構成している地質と密接な関係をもっていると考えられる。すなわち、山稜部は、この地域の基盤岩類の分布地域と一致しており、凹地部は、より新しい時代の地層が分布している地域と一致している。このような事実は、いうまでもなく、地質時代による構成岩の岩質の違いや削制のうける度合いによるものであるが、それぞれの地域の昇降運動も反映しているものと考えられる。

図幅地域内を流れる河川は、すべて太平洋にそそいでいる。これらの河川のうち、その源が日高育梁山脈にあるものは、新冠川、シュンベツ川、コイホクンピチャリ川などがある。また、まえにのべた西側の山梁部にその源を発するものは、宿主別川と比宇川がある。前者は頼平川と、後者は厚賀川と、それぞれ合流する。これらの河川の流路の方向性は大きくみると、N-S系とE-W系のものが多い。この方向性は基盤に発達している断層系の方向とはほぼ一致している。これらの河川の流域は、一般に急崖をつくっており、また水量が多いために、各所に通行困難な箇所が発達している。中でも、新冠川とシュンベツ川の上流流域は、急崖の連続する急狭なところでよくされている。

第3図 シュンベツ川中流の渓谷
（日高西銘構造帯の輝巻岩地域）

第4図 白亜系の発達している地域
の地形は、かなりゆるやかである。（新冠川中流）
これらの各河川の沿岸にそって河岸段丘が発達している。とくに、白亜系の地層の分布している地域にその発達がいちじるしい。段丘は、河床からの比高によって、第 1 河段丘と第 2 河段丘とに分けることができる。第 1 河段丘は比高 40 m～120 m までの間に、また第 2 河段丘は 5 m～20 m までの間に、それぞれ発達している。

III 地 質

III.1 地 質 概 説

イドンナップ図幅地域は、北海道東部地區とよばれる特筆のような地質構造発達を行なった地域、すなわち、日高地方斜から日高造山運動へと大きな地殻変動をへてきた地域の一部にあたっている。したがって、全般的にいちじるしい擾乱をうけており、きわめて複雑な褶曲構造を形成しているほか、各種のせん断帯が発達している。

この地域に分布している堆積岩類は、大きくみると先白亜系、白亜系、新第三系に分類することができる。先白亜系の堆積岩類は、上・下二つの地層にわけることができる。下部層は、おもにチャート、砂岩、粘性岩類から構成されているイドンナップ層で、上部層は、おもに輝長凝灰岩から構成されている岩清水層である。

これらの地層は、この地域の基盤を構成しているもので、とともに日高地方斜の堆積物と考えられる。これらを不整合におおって白亜系および新第三系が発達している。その分布の形態は、あきらかに基盤の地質構造を反映しているものとみられる。

一方造構単位という観点から、基盤構造をみれば、つきのように区別することができる。

西

……………………白亜系

| 日高西線構造带 *
| 日高带

| 日高東線構造带 **
| 日高前線変曲带

東

………………新第三系

日高中軸変曲带

これらの各造構造単位は、それぞれ NNW—SSE 方向をとって平行に配列しているが、さらに白亜系の分布の形によって、これらの帯状配列が強調されている。これらの各単位

* 従来、日高帯の輝長凝灰岩帯とよばれてきている地帯であるが、この図幅説明書では日高西線構造帯と仮称した。

** 従来は、変成帯日高帯ともよばれているが、この図幅説明書では日高前線変曲帯と仮称した。
<table>
<thead>
<tr>
<th>時代</th>
<th>層序</th>
<th>模式柱状図</th>
<th>層厚m</th>
<th>岩質および岩相</th>
</tr>
</thead>
<tbody>
<tr>
<td>第四紀</td>
<td>水 埋 石 2 河段丘堆積物</td>
<td>T, D, D,</td>
<td>400±</td>
<td>貝岩を主とし、砂岩をはさむ。</td>
</tr>
<tr>
<td>新第三世</td>
<td>シシナイトマ マイ状層</td>
<td>Tk</td>
<td>800±</td>
<td>貝岩を主として、砂岩層及び頁岩層をはさむ。</td>
</tr>
<tr>
<td>白 場</td>
<td>新 華 層</td>
<td>M,</td>
<td>300+</td>
<td>砂岩を主とし、頁岩層をはさむ。</td>
</tr>
<tr>
<td>白 場</td>
<td>頭 五 装 層</td>
<td>M</td>
<td>100 / 300</td>
<td></td>
</tr>
<tr>
<td>造</td>
<td>双 現 装 層</td>
<td>L</td>
<td>200+</td>
<td>粘板岩を主とし、頁岩を是さむ。</td>
</tr>
<tr>
<td>造</td>
<td>岩 清 層</td>
<td>Sc, Sc, Sa,</td>
<td>1500+</td>
<td>集塊状凝灰岩を主とし、泥岩及び頁岩をはさむ。</td>
</tr>
<tr>
<td>造</td>
<td>イ ド ナ ッ プ 層</td>
<td>Hd, Hc, Lc</td>
<td>3000+</td>
<td>粘板岩・砂岩・頁岩を主とし、頁岩の凝灰岩及び頁岩をはさむ。</td>
</tr>
</tbody>
</table>

第5図 イドナップ岳図域地域模式地質柱状図
は、それぞれ持ちょうのある構造をしめしており、また各構造単位にみられる火成岩類あるいは変成岩類の性質にもかなりの違いがみられる。日高帯の中心的生おしくているとみられる中央変成帯は、この図幅地域では、東北端部にわずかその一部が分布しているにすぎない。その大部分は堆積性火成岩あるいは、その変成岩からできており、いちじるしい偏斜配列をしめしている。前寒武系は、まえにのべたイドンナップ層の主要な分布地域であり、一般に、火成活動や変成作用はいちじるしくない。しかし、小規模ではあるが、スピライト質岩類や蛇紋岩その他の火成岩類が分布している。また、黑色千枚岩や緑色片岩質の弱変成岩類がみとめられる。日高西総構造帯は、スピライト系の輝緑岩複合構造から構成されている。神居古層はまえにのべた不変成中帯と類似の性質をしめしているが、とくに大規模なスピライト質岩類とその凝灰質岩類によって持ちようづけられる。また、規模のやや大きい蛇紋岩体が分布しており、そして、含らんせん石岩のような前寒武系岩にはみられない変成岩類がみとめられる。

第四系は、大きな河川にそって発達している河岸段丘と、ナメワカ岳の北東部に発達している集谷がしめられているにすぎない。

III.2 堆積岩類

III.2.1 先白亜系

まえにのべたように、先白亜系は、イドンナップ層と岩清水層とにわけられる。両者の関係は、明らかに整合とみることができる。ともにはとんど化石を産出しないので、その時代を決定することはひじょうに困難である。しかし、イドンナップ層の上部から産出した化石は、ジュラ紀のものの可能性がある。

岩清水層およびイドンナップ層の時代は、おそらくジュラ紀とみられるが、イドンナップ層の下部はあるいはトリアス紀にかかる可能性がある。

イドンナップ層

この地層は、白亜系の発達する東部地域の前寒武系の大部分をしめており、また、その西部の地域（神居古層）にも小範囲に分布している。チャート、砂岩、粘板岩を主とし、そのほか、石灰岩、輝緑凝灰岩のレンズ状体や薄層をはさんでいる。

北海道の中央地域でいまだに得られた資料から考えならば、この図幅地域の神居古層

* 目下戦中であり、まだはつきりした結果は得られていない。
** この地層は、地質図では、チャート（Hc）、輝緑凝灰岩（Hs）、石灰岩（Ls）および砂岩・粘板岩（Hd）の各岩相においてべつべつに深い色をしてある。

— 7 —
帯に分布しているイドンナップ層として取り扱っている地層は、山部層の下部層とみられる。この地層を、日高前線帯曲帯に広く分布しているイドンナップ層と同一の地層としたのは、つきのような理由からである。

i 地質断面図による推定（A-B断面図参照）

新冠川中流域には、岩清水層の下位に、前線帯に分布しているイドンナップ層とひしようによく似た地層が北部と南部にそれぞれ分布している。北部に帯状に分布しているのは、下盤側がミロナイト化しており、しかも低角度の帯状性の逆断層によって塗いされている。明らかに、断層運動によって、岩清水層の下位に存在しているが地層持ちあげられたものとみられる。また、南側に分布しているものは、緩い複雑な褶曲構造をしめしているが、シュンベツ川流域に分布しているものに似たものとみられる。さらに、シュンベツ川流域で、この地層は南東側に分布している褶状構造をしめすスピライトの下部へ入りこんでゆく状態が観察される。このような事実は、岩清水層の下位に、チャート、砂岩、粘板岩類から構成されているかなりの厚さをもつ地層が横たわっている可能性を暗示している。また、白綜系の分布地域内には、岩清水層とおもわれる輝緑凝灰岩が断層で持ちあげられているが、この地層とともに、ミロナイト化した粘板岩が伴なわれているのが、一部ではみとめられる。このような事実は、白綜系の分布地域の下部にも、輝緑凝灰岩や粘板岩が存在していることをしめしているだけではなく、神居古塚帯と日高帯が近接する位置にあることをも意味している。

このような地質現象からみると、岩清水層の下位の地層が、前線帯のイドンナップ層と同一の堆積盆の中の一連の堆積物であるという考え方が導きだされる。

ii 層序および岩質

iの解釈が正しいとすれば、これら両者の層序関係や岩質などに共通するものがあるはずである。現段階では、層序がないために、詳細な層序を確立するまでにいたっていない。しかし、大きめみると、第6図のような層序であるとすすむことができる。この図からこれらの2つの地層の間には、ひしように共通している要素が数多くみ出される。これらを構成している各岩石を比較すれば、つぎのとおりである。

この場合、次のことが考慮されねばならない。すなわち、神居古塚帯に分布しているものは、岩清水層に接する上部の付近しかみられないこと、一方、日高帯側では、逆に上位の岩清水層に相当する地層が分布していないこと、そのため、この地域のものよりさらに上部層が現われているとみられる。北部幌尻岳周永地域の資料をも加えて検討した。
岩 清 水 層
イ ド ヌ ナ ッ プ 層

1: 新冠川中流（The mid-stream of Niikappugawa）
2: 新冠川下流（The lower stream of Niikappugawa）
3: プイラルべツ川（Puirarubetsugawa）
4: シュンベツ川上流（The upper stream of Shunbetsugawa）
a 晃輝凝灰岩（Sohalstein） b 枕状熔岩（Pillow lava）
c チャート（Chert） d 石灰岩（Limestone）
e 砂岩および粘板岩（Sandstone and slate）
F 断層（Fault）

第6図 地質柱状図（Column section）

1) 岩清水泥層の下位の地層には、緑色チャートを交えた赤色チャートの発達がいちじるしい。イドンナップ層の上部の同層準と考えられる付近にも同じようなチャート類が発達している。そして、どちらも多量のラジオラリヤをふくんでいる（PL1）。

2) チャート層の間に挟在している粘板岩の中に、両地域とも、石灰岩体が介在している。これは、将来より精密な調査が行なわれたならば、同一層準にあることが明らかになる。
れる可能性がある。

3）両地域とも，チャート層の中に分布している粘れ岩の中に，きわめて特徴のある，緑色を呈する石灰質頁岩が発達している。しかも，日高帯側では，イドンナップ層の上部とみられる部分にしか発達していない。

4）両地域に発達している砂岩は，暗灰色ないし灰色を呈する，球質硬砂岩が圧倒的に多く，また，やや細粒のものはラミナが発達している。また，局所的ではあるが礁岩の

第7図 イドンナップ層上部の砂岩
（Laminated sandstone of the upper part in the Idonnappu formation）

発達がみとめられる。礁の種類には，砂岩，チャートが多く，ほかにスピライト質の岩石がみとめられる。砂粒は，おもに，石英，チャート，斜長石で，このほかに少量のスピライト質岩片，カリ長石がみとめられる（PL 2）。セメント構造物質は10〜20％で，このなかに結晶母などが生成している。しかし，両地域のものをみるとわずかに違いがみとめられるが，これは，むしろ二次的変化の違いと考えられる。

iii 火成活動

岩清水層の下位の地層の中には，多数の暗赤褐色を呈する枕状熔岩が発達している。日高帯地域でも，数は少ないが同質の枕状熔岩がみられる。このことは，両地域を通じて，一連の火成活動の場にあたったことを意味している。

これまでのべてきたことから考えれば，岩清水層の下位の地層を，イドンナップ層の中にふくめることが妥当であると結論づけられる。このことは，従来，相互の関係が必ずし
第8図 地層対比表

も明らかでなかった。空知層群と日高層群の関係が整合であり、前者が日高層群の上部層であることを示すものと考えられる。これについて、これまでの資料を、この地域のものと比較すれば、第8図のようである。この図から理解されるように、2つの層群名の使い方が間には、かなりの混乱がみとめられる。このために、この図幅説明書では、エゾ層群の下位の地層を、日高層群と総称することにした。

これまでのべてきたことは、主として、イドンナップ層の上部にあたるとみられる部分についてである。多量のチャートの発達している部分の下部の地層については、まだ、あまり明らかでない。これは、全般にきわめてはげしく擾乱されており、各種の褶曲構造をつくり、いろいろの規模の剪断帯が発達しているために、詳細な層序を確立することが困難な状態にあるからである。現在までの資料からみて、イドンナップ層の東西に分布している蛇紋岩体の間にはされている部分は、おそらくイドンナップ層の下部層と推定される。この地層は、わずかに赤色チャートをはさみ、そのほとんどが粘岩と砂岩から構成されている。砂岩は、細粒ないし中粒の粘質硬砂岩で、上部のものとよく似ており、一連の堆積物と考えられる。イドンナップ層全体の層厚は、あまり明らかでないが、3,000 m +と推定される。

この地層と日高中軸成層帯とは、衝断層帯で塗いされており、いちじるしい破砕帯が発

* これについての詳しい報告は、長谷川潔、小山内照他（1961）
** この部分は、あるいは、神威岳図幅のソマツ沢層に対比できるかもしれないが、ここではイドンナップ層にふくめておいた。
達している。シュンペツ川上流の一部では、街村断層に接して、この地層の変成されたもののとみられるホルンヘルスが分布している。

岩 清 水 層

この地層は、膨大な輝緑凝灰岩と、その中に挟在している砂岩、結核岩およびチャートから構成されている。また、この地層の堆積と同一時期にみられる状況岩を主体とするスピライト質岩類が多数に伴在している。この地層は、すでにのべたように、イドンナップ層の上位に発達している地層で、両地層はインターフィンガー様の関係で移化している。したがって、岩清水層の下限は、つきりした境界でイドンナップ層と区別することはできない。この図幅地域では、膨大な輝緑凝灰岩層の下部にいちおうの地層境界をおいた。

第9図 集塊質輝緑凝灰岩
(Aglomeratic schalstein) [シュンペツ川中流]
岩層をしめす輝緑凝灰岩（Laminated schalstein）（新冠川支流モーレノレカシュベ沢）

岩清水層を構成している主な堆積岩である輝緑凝灰岩は、大部分が集塊質凝灰岩あるいは角礫凝灰岩である。このほか、局所的に縞状凝灰岩がみとめられる。

これらの凝灰岩の中にふくまれている角礫は、いろいろの大きさのもので、おもに枕状熔岩にみられるものと、同じような杏仁状構造をしめす岩質のものである。このほかに、1 cm 以上にも達するチタン質の単斜輝石を多数ふくむ斑状岩や斜長石の大型塩晶を多数ふくむスピライト質斑岩がみとめられる。これらの礫の間を埋めている基質部も、一様ではなく、いろいろの岩相がみとめられる。そのうち、最も普遍的にみられるものを、顕微鏡下で観察すればつきのようである（PL 3, 4）。

堆積時のラミナの発達している縞状凝灰岩には、縞状のものとゴム状のものとがみとめられる。堆積時のラミナの発達している、縞状の凝灰岩には、珪質のものと石灰質のものときとみとめられる。珪質の岩相は、チャートと境界部付近に、また、石灰質のものは、集塊質
および角礁凝灰質岩の中に、それぞれ発達していることが多い。

珪質岩相は、ひじょうに細かな緑泥石、石英、斜長石から構成されている。これらは、定方向配列をしめしている。斜長石は、捲曲のけんちょっとものであり、また、石英はチャートを構成しているものと同質で、結晶輪かくをしめさないものである。

石灰質岩相は、大部分が微細な方解石からできている。そして、この間、捲曲のけんちょっとな柱状斜長石片や、石英粒が少量みとめられる。これらの間、定方向をしめして、赤鉄鉱の微粒が多量にみとめられる。

この地層の中に発達している、砂岩、粘板岩およびチャート類は、イドシナップ層のそれとは、大きな違いはみとめられない。

III.2.2 自窒系

イドシナップ図幅地域の自窒系は、日高西縁構造帯と神居古抵抗構造帯の2つを構造帯にはさまれて、複向斜構造帯を作って分布している。このように分布上の位置づけは、この図幅地域だけでなく、けり舞川から空知川地域まで、南北100 kmにわたって、ほぼ同じ構造をとりながら連続している。また、層相も、ほぼ連続して追跡することができ、つきのように区分されている

<table>
<thead>
<tr>
<th>上部エゾ層群</th>
<th>千呂露川層</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>カンコシナイ沢層</td>
</tr>
<tr>
<td>中部エゾ層群</td>
<td>新冠川層</td>
</tr>
<tr>
<td></td>
<td>額平川層</td>
</tr>
<tr>
<td>下部エゾ層群</td>
<td>双枝別川層</td>
</tr>
<tr>
<td></td>
<td>三石川層</td>
</tr>
</tbody>
</table>

先自窒系

この図幅地域には、下部エゾ層群と、その上に不整合で発達している中部エゾ層群とが分布している。また岩相によって区分すれば、下部エゾ層群下部の三石川層、中部エゾ層群上部のカンコシナイ沢層は、断層で失われている。

両層群は、複向斜構造をとっているにもかかわらず、東西両翼での分布は対称的ではない。それは中部エゾ層群下底の不整合の状態をあらわしていると同時に、一方では、過屈曲と断層にもとづくものである。

* 小山内黒、松下勝秀（1959）、（1960）、（1961）日高山脈西麓の自窒系I、II、III地下資源調査報告 21号、24号、25号
両層群を通して、化石の産出が乏しく、明確な時代決定はむずかしい。しかし、層相上の特長は、日高山脈両側の白亜系を通じて追跡することができ、時代のほぼ確定された地域との対比が可能である。

下部エゾ層群

双珠別川層（L）

この地層は、白亜系向斜帯の東翼の、白亜系と日高西斜構造帯の境界衝断層断層部にだけ分布している。したがって、いちじるしく断層化した形で分布しており連続性にきわめて乏しい。ことに図幅の北部地域では、衝断層の下にくかされていることが多い。また下位の層群とは、いずれの地点でも断層で接しているので、直接の関係はみることができない。

主な発達をしめしているイドンナップ川およびシュルツ川の東翼部では、砂岩と頁岩の互層を主体とする層相からなりたつている。

一般に、細粒～中粒の板状砂岩と、頁岩の薄互層で構成されているが、砂岩や頁岩の介
在量や厚さは一定していない。砂岩には、しばしば粗粒のものや、礫質のものがある。
インドナップ川とシュンペツ川に発達している双層別川層は、大まかには同じ構造的位置
に発達しているものとみられるが、両地域の層相は、やや逆っている。インドナップ川で
は下部が砂岩や富む互層で構成されており、中粒～粗粒塊状砂岩を挟んでいる。上部は、
だいに頁岩に富む薄互層（10～15 cm の交互層）となら、中部エゾ層群の下底に、破
砕された頁岩が接している。一方、シュンペツ川では、下位から、頁岩に富む薄互層、砂
岩に富む互層、頁岩に富む互層の順に露出している。
この地層の厚さは、露出している部分でおよそ 100 m であるが、断層で切られている
ため、真の層厚をしめしていない。

中部エゾ層群

この図幅地域の中部エゾ層群は、岩相によって、さらに、額平川層および新冠川層の 2
つの地層に分けられる。

中部エゾ層群は、明らかに不整合関係をしめして、下位層と接している。日高地域全域
を通じてみると、この不整合は、南部ほど下位層を削り、また白壁系の複斜帯の西翼は
と下位層と接する特徴をしめしている。この図幅地域でも、例外ではなく、向斜の西
翼部では、岩渓水層と、東翼部では、下部エゾ層群と接している。

中部エゾ層群の特徴は、下部の額平川層の層相変化がかなりいちじるしい。凝灰岩が、ひんぱんに介在していることである。

額平川層（M1）

額平川層は、北部地域では、東翼部が複斜を形成して 2 帯に分かれて広く分布しており、
西翼部の分布は少ない。また南部では、西翼部で複斜斜が発達して 2 帯に分かれている。

複雑な褶曲や断層によって、地層の走向・傾斜は、かなりみだれている。とくに、東翼
帯では複雑な、過褶曲、微褶曲帯が幅 1 km にわたってみつめられる。しかし、一般的に
は、N10°～20°W，50°～80°NE の走向・傾斜で、多くの場合、東側に逆転傾斜をしめし
ている。

まえにのべたように額平川層は、下位層を不整合におおって発達している。不整合関係
を最も模式的に観察できるのは、南部の西翼帯である。ことにインドナップ川流域の崩れ
沢では、第 13 図にしめしたように、岩渓水層の輝緑岩や岩の不規則な面上に直接礫質砂
岩、または礫岩が発達している。ところが東翼部では、下部エゾ層群同様別川層の上に平
行不整合に厚い礫岩が発達している。第 14 図はインドナップ川流域の中部エゾ層群と下
位層との不整合関係を模式的に示したものである。
第12図 額平川層の褶曲の様子
(The folding phenomenon of the Nukabira formation) [新冠川]
この地層は、基底礫岩、礫質砂岩、頁岩、凝灰岩などで構成されている。

礫岩は、小豆大から人頭大前後の円礫、角礫などからなり、礫の種類は、輝緑凝灰岩、輝緑岩、硬砂岩、枯札岩、チャート、石灰岩、玄武岩質および安山岩質岩石などである。基質は粗粒砂岩の場合が多いが、まれに新冠川本流の上流道路切害の露出のように頁岩のこともある。

砂岩は、一般に粗粒で塊状の産状をしているが、上部では、頁岩と薄互層の状態をしめしている。

頁岩は、一般に板状の層理をしめしており、砂岩のラミナの発達しているものが多い。また、シルト岩質のもののがしばしばみられる。下部では薄層として砂岩の中に介在し、上部では砂岩と互層していることが多い。しかし、イドンナップ川流域のように、厚層で発達する場合もある。

凝灰岩は、灰白色または淡青白色を呈する細粒緻密なチャート状の産状をとるものと、灰白色を呈する鉱粉のようなものとがみられる。ともに1枚の厚さが1.5mを越えることがない。砂質凝灰岩または凝灰質砂岩および頁岩などの互層状をしめしていることが多い（第15図）。

この地層の層相は、おおまかには、下部から、基底礫岩層・砂岩層・砂岩頁互層の垂直方向
M_1: Nukabiragawa formation base
(The base of the Nukabiragawa formation)

P_l: Pillow lava
(pillow lava)

第14図 A 中部エゾ層群基底の不整合部
(The part indicating uncomformity between the Middle Yezo group and the pillow lava of the Iwashirizug formation)

第14図 B Aの拡大写真
第15図 願平川層中の凝灰宕の産状
(The occurrence of tuff in the Nukabiragawa formation) [願平川]

向の層相変化をしみじしている。しかし、これらは全層にわたって一種の発達をしめしていない。つまり、南北および東西の水平方向の層相がいちじるしく変化する持ちょうをもつている。また、それぞれの層の厚さの変化もはげしい。

基底凝灰宕は、ほぼ全層にわたってみとめられるが、凝灰宕の凝灰の大きさ、凝灰宕の厚さなどはかなり、変化にとんでいる。ことに東翼帯と西翼帯では対称的な差異をしめしている。

<table>
<thead>
<tr>
<th>西 翼 帯</th>
<th>東 翼 帯</th>
</tr>
</thead>
<tbody>
<tr>
<td>粒の大きさ</td>
<td>小豆大〜指頭大</td>
</tr>
<tr>
<td>砂粒の形状</td>
<td>円礫、重円礫</td>
</tr>
<tr>
<td>砂宕の状態</td>
<td>やや淘汰されている</td>
</tr>
<tr>
<td>砂宕の厚さ</td>
<td>薄い、10〜50 cm</td>
</tr>
</tbody>
</table>

願平川本流では、二地点に砂宕の露出がみられる。ともに人頭大前後の角礫をふくむ分級がわるい。このような砂宕は、イドナップ川、シュンベツ川、ベンケアプラ川などの東翼帯にみられる。しかし、イドナップ川支流の崩流では第13図のようにきわめて、薄くなっている。また、ここでは、二枚介化石の破片を散点的にふくんでいる。以上の中点地では、いろいろな種類の砂をふくんでいるが、ベンケアプラ川などの下流では、輝緑宕、輝緑凝灰宕砂だけの構成されている砂宕もみられる。

砂宕の上部には、塊状粗粒砂宕、板状砂宕などが発達しており、しばしば、炭質物や植物化石破片をふくんでいる。上部ではだいに頁宕の薄層を介在しはじめ、砂宕・頁宕の薄互層が厚く発達している。局部的に、塊状砂宕・板状砂宕および頁宕の厚い層を介在す
することもある。この上部にチャート状の凝灰岩をひんぱんに介在する層準が発達している。全般的にみると東翼帯では、頁岩の厚層を多く挟んでいるが、西翼帯では頁岩の発達がいちじるしい。ことにイドンナップ川の西翼帯では、250〜200 m におよぶ頁岩が発達している。チャート状の凝灰岩を基準にしてみると、イドンナップ川地域では第 13 図のような模式的層相変化がうかがえる。つまり、凝灰岩は、東翼帯では、砂岩に富む互層の中に、西翼帯では頁岩に富む互層または頁岩層の中に介在している。しかし、北部の新冠川地域では、むしろ、イドンナップ川地域の東翼帯と同じように砂岩に富む互層の中にみられる。

この地層の中から化石の産出は、ひっそうにまれである。ただシュンペツ川本流の道路の切取りから、属種未決定の Ammonite 破片を産出している。

額平川層の厚さは、部分的にかなり異なっている。一般的には、東翼帯で薄く（約 300 m）西翼帯で厚く（約 600 m）なっている。

新 冠 川 層（M2）

向斜帯の、ほぼ全域にわたって分布している。模式的には、新冠川本流に発達している。この地層の一般走向・傾斜は、N10〜30°W、40〜90°NE で、多くの場合逆転傾斜をしめしている。下位の額平川層とは、整合的にかわっているが、層相ははっきりと違っている。つまり、額平川層の最上部の互層の上に発達する厚い頁岩から、この地層にふくめた。

この地層は局部的にシェル岩をふくむが、おもに暗灰色を呈する頁岩の厚層からできている。粗粒〜細粒砂岩の単層（1〜3 m）・葉岩・頁岩の薄互層（3〜50 m），灰白色ペントナイト状の凝灰岩の薄層（1〜10 cm），粗のように凝灰岩（20 cm〜1 m），凝灰質砂岩（20 cm〜3 m），チャート状凝灰岩（1〜3 m）などを作っているが、これらは、一定層準をしめしていない。球状がしばしばみとめられるが、化石はほとんど包蔵していない。また Inoceramus や Ammonite を産出する化石帯もみられる。北部の新冠川流域では、この化石帯と、チャート状の凝灰岩・粗のように凝灰岩などとの組合わせは、かなりな範囲にわたって追跡される。したがって化石帯は、ほぼ同じ層準にあるようである。この層準は、新冠川層の基底から、新冠川では約 700〜800 m、イドンナップ川では約 400〜500 m 上位にみとめられる。サツナイ沢上流・新冠川本流・ホルカン沢上流・イドンナップ川本流などに

* 地質図では、とくに頁岩の厚層、および凝灰岩をひんぱんにはさむ部分を層準として塗色してある。
** 地質図では、とくに、厚い互層部および砂岩をひんぱんに介在する部分を層準として塗色した。
みられるが、南部のシュエンベツ川流域では、まつたく発達していない。したがって、南部では、上部を失っていることになる。

この地層を構成している頁岩は、下部では板状層理が発達し、砂質のラミナを介在することが多いが、上部では、チリメン状になって、細片に破砕されやすくなっている。また、北部の新冠川流域では、全般的に黒光りする粘板岩様の外観を呈している。

似しよう凝灰岩・凝灰質砂岩には、黒雲母を多量にふくんでいるのが特徴である。

まえにのべたこの地層の化石帯からは、つきのような化石を産出している。

* Eucalycoceeras sp.
* Inoceramus concentricus Parkinson var. costatus NAGAO et MATUMOTO
* Inoceramus cfr. incertus JIMBO
* Inoceramus cfr. hobetsensis NAGAO et MATUMOTO
* Inoceramus hobetsensis NAGAO et MATUMOTO
* Inoceramus cfr. yabei NAGAO et MATUMOTO
* Inoceramus sp.

これらの化石からみて、その時代は、上部ギリヤーク世をしみじしているとおもわれる。

この地層は、断層で切れ、また、窪曲していることが多いため、真の層厚を算出することはむずかしいが、新冠川流域では、およそ1000 m である。イドシナザプ川流域では500 m〜600 m である。

III. 2.3 新第三系

カシコシオウマナイ沢層（Tk）

この図幅地域には、ジュンペツ川上流地域の変成帯西側の断層の近くと、カシコシオウマナイ沢流域の、2カ所に分布している。

その分布の形は、変成帯にほぼ平行であるが、この地層の走向は変成帯と斜交している。標式的な露出のみられるカシコシオウマナイ沢付近では、走向、傾斜はともにいちじるしい変化をしみじっている。しかし、ここでは N-S の褶曲軸をもつ向斜構造が推定される。下位の地層とは、すべて断層で接しているが、カシコシオウマナイ沢の枝沢には厚い礫岩層が発達しており、不整合関係にあることがうかがえる。層厚は、400 m と推定される。

* resembling E. Penlagonum (JUKES BROWN) (松本達郎鑑定)

** このような現象は、この新第三系の南東延長部にあたる、神居沢、および栗古岳図幅地域内のものと共通してみられることがある。
I: カシコシオウマナイ沢層 (Kashikoshioumanizawa formation)
II: イドンナップ層 (Idonnappu formation)
Sil: シルト岩 (Silt-stone), Li: 石灰岩 (Limestone), cht: チャート (Chert),
S.S: 砂岩 (Sandstone), c-g: 集塊岩 (Conglomerate), Br: 破砕帯 (Breciated zone)
文: 化石産出位置 (A part occurring fossil fauna)

第16図 カシコシオウマナイ沢層の基底部付近のスケッチ
(Sketch near the base in the Kashikoshioumanizawa formation)

この地層には、まえにのべた礫岩のほかに、厚い頁岩層が発達している。そして、この中には中粒ないし粗粒の砂岩層をかなりはさんでいる。また、頁岩中には、多数の石灰質同球がみとめられ、一部のものから二枚介の化石が採取された。礫岩は、主として、親指大から拳大ていどの礫をふくんでいるが、1 m 以上の石灰岩礫を多数もつている部分もある。礫の種類は、チャートがもっとも多く、このほかに、ユビライト質岩類、頁岩、細粒砂岩、粘板岩などがみとめられる。この地層の中から産出した化石には、つぎのような種類がある。

Portlandia (Portlandella) tokunagai (YOK.) var. hayasakai Uozumi
Yoldia (Orthoyoldia) sagittaria YOKYAMA
Macoma spp.
Turritella cfr. nipponica YOKYAMA
Turritella sp. (大型)

この化石からみると、おそらく川築層の上階に対比されるものと考えられるが、あるいは、これより若干上流の地層に対比される可能性もある。
III.3 変成岩類

この図幅地域に分布している変成岩類には、2つのタイプがみられる。一つは、神居石帯や日高前積帯に分布しているもので、きわめて局所的な発達をしめすものである。もう一つは、中軸変成帯の西翼を形成しているものである。前者に属するものには、準片岩、含らんせん石岩、およびホロネックがある。後者に属するものには、緑色片岩およびセプタがある。

III.3.1 準片岩（Se）

ここで準片岩とした岩石は、ひじょうに低変成の片岩質あるいは千枚岩質の岩石である。この岩帯は、シピナヤ川流域や、この地域の蛇紋岩近入帯の近くに分布している。とくに、シピナヤ川流域では、N15°W、80°NEの走向・傾斜をしめして、600mほどの幅で分布している。これは、さらに、隣接する神居古津帯地域にはいつて、幅広く帯状に発達しているものである。

一般に、いちじるしい剝離性をもった黒色千枚岩、緑色千枚岩、珪質千枚岩、およびミロナイトなどの岩質のものがみとめられる。

これらの岩石には、条線状の線構造（striation）や“しわおれ”（crenulation）などが発達していることが多い。黒色千枚岩は、粘板岩が手絹岩化されたものであり、ときには多量の石英と緑雲母が形成されていることがある。しばしば、各種の砂岩をはさんでいる。緑色千枚岩は、おそらく輝線岩礦とおもわれるもので、顕微鏡下で観察すると、長柱状の斜長石（0.1×0.3mm）のレリックがみとめられる。一般に準片岩の中には、片理を切る石英の細脈が多く発達している。

これらの岩石は、この地域では、大部分がイドンナザプ層の砂岩・粘板岩などの変成したものとおもわれるが、部分的に岩氷水層の輝緑凝灰岩が変成されたと考えられるものがみとめられる。

III.3.2 含らんせん石岩（Gj）

この岩石は、蛇紋岩近入帯の中にだけ分布しており、現在までのところ、神居古津帯にしかみられていない。

* 塩基性岩自体、現象形からいえば明らかに変成岩として取扱うべきであるが、ここでは、初源的には塩基性送入岩であること、その方が都合がよいので、火成岩の項で取扱うこととした。

** 地質図に表現できないスケールで発達していることが多い。
らんせん石をふくんでいる岩石には、2つの種類がみとめられる。
一つは、紫色を呈する硬質の珪質岩である。この岩石は、新冠川中流付近で1カ所露出がみられるほか、転石としてみられることが多い。
この岩石を顕微鏡で観察すれば、大部分がひじょうに細粒の不定形の石英から構成されており、この中に到状のらんせん石と粒状の緑れん石とが、多量に散在している。
この珪質の基質の中には、放散虫化石が少量残されており、原告が放散虫チャートであったことが確かである。
もう一つは、蛇紋岩と角閃岩との間に発達している方解石脈の中にみとめられる。このような産状のものは、新冠川にそった道路の切削りのところで、ただ1カ所しかみとめられない。
顕微鏡下で観察すれば、多量の針状結晶の集合体をつくっているらんせん石がモザイク状方解石を貫いて発達している（PL 5）。さらに、モザイク状の石英集合体でもちろろしく置換されている。方解石の間には、2〜3 のクロム鉄鉱結晶が存在しており、明らかに蛇紋岩を交代しているものとみられる。また、らんせん石とは共生していないが、同じ部分で、方解石と共存している多量のぎきろよがみられる（PL 5）。
このような事実は、少なくとも、らんせん石の形成が蛇紋岩進入以後の交代作用によって行なわれたことをしめすものと考えられる。

III. 3.3 ホルンヘルス（Ho）
ホルンヘルスは、前にのべたように、シュンベツ川上流地域の変成帯西縁上部断層に近接する小範囲に分布している。このような位置にホルンヘルスがみられるのは、南部狭間地域と北部の狩勝部の南部地域がより発達しているが、ほかでは全然されていない。この地域のものは、ひじょうに局所的な分布をしめしているために、そのくわしい性質は明らかでない。わずかな桃色味をおびた、低変成の黒雲母ホノンシヘノンスである。
なお、図幅地域の神居吉浜带の中に進入しているトロニエム岩は、そのまわりの粘板岩との接触部に、10 cm 内外の範囲でホルンヘルスを形成している。

III. 3.4 緑色片岩（Gr）
緑色片岩は、変成帯の西南部を形成しており、1 km 内外の幅で帯状に分布している。そして、西側のインドナップス層とは上部断層で見えされており、また、東側の緑色角閃石片状角閃岩とは、剪断帯で接している場合と、間に 15 m 内外のセプタを介在している場合とある。

* トロニエム岩による熱変成現象は、神居吉浜带の各所で観察できる。道央断層の富良野地域では、このようなホルンヘルスのわり合広範囲の発達がみられている。
この岩石帯は、北部と南部とは、その産状に違いがみとめられる。すなわち、北部シュンペンツ川地域では、緑色を呈する細粒の片理のいちじるしい岩質のものだけからできている。これに対して、南部のコイボクツシクリ川地域では、斑状断層に近い側に、いちじるしい片理をもった暗灰色を呈する岩質が、20 m くらいから100 m ほどの幅で屈状の形態をしめしている。この場合、変成帯の外側ほど灰色を呈するものが多く、内側になるほど緑色を呈する傾向がみとめられる。全体を通じて、東側ほど再結晶度がつよく、角閃片岩様の岩質のものにかわっている。そして、それに伴って、ちりめんじわ様の線構造がいちじるしくみとめられるようになる。

緑色のものを顕微鏡下で観察すれば、つきのようである。

再結晶化の弱いものは、主として、ひじょうに細粒のモザイク状集合をつくっている石英と、緑泥石、緑雲石から構成されており、このほかに、白チタン石や灰色状物質が多量にみとめられる。これらの各鉱物は、けんちの定方向配列をしめしており、また、微結晶構造をつくっている（PL6）。

再結晶化のより進んだものは、0.1〜0.5 mm ていどの羽毛状片岩が大部分をしめており、多量の石英を含むもので、緑色を呈するものには、石英が主成分で、緑泥石や緑雲石から構成されている。また、緑泥石が多量にみとめられる。これは、0.05〜0.3 mm ほどの粒状のもので、一部に薄い未変成帯が存在することがある。これは、片理に平行な脈状のモザイク状集合をつくっていることが多い。

角閃片岩は、X=淡緑色、Y=帯黄緑色、Z=帯緑色の多色性をしめし、陽起石質であるが、一部のものに、オフィティック様の残存組織のものがあり、緑色を呈するものは、石英・緑雲母片岩の岩質をもっている。

顕微鏡下でみると、いちじるしい方向性をもつ、多量の緑泥石とモザイク状石英（径0.03 mm 平均）とが脈状に配列している。斑状断層の近くのものは、緑泥石と石英が少なく、微結晶の石英が残っているものが多い。

以上のべた状態からみると、灰色を呈するものは、片岩を原岩とするもので、緑色を呈するものはオフィティック輝石をもつ結晶岩源のものであると推定される。

III.3.5 セプタ (St)

セプタは、中軸変成帯に分布している塩基性火成岩類の間に発達しており、つきのよう

** 南部の駆動岩相域内においても、おなじような構造的位置に、ミロニト質の緑色片岩がみられる。ここでは、明らかに輝緑岩とみられる岩質部が残存しているのがみとめられる。

** セプタは、中軸変成帯に進入しているあるいは塩基性岩類の岩体相互を区切る隔間の意味をしめす用語である。この図幅では隔間を構成している岩石の意味で使用した。
をしめしている。これを顕微鏡下で観察すれば、つぎのようである。

1) 緑色片岩と緑色角閃片状角閃岩の間に発達しているもの；
2) 緑色角閃片状角閃岩とソーシュル石はんれい岩との間に分布しているもの；
3) ソーシュル石はんれい岩と褐色角閃石角閃岩との間に分布しているもの；などである。

これらは、どの場所でも、10〜20 m ほどのひじのように狭い幅のものである。セプタの両側には、一般に、剪断帯が発達している。

この岩石は、塩基性岩と接する付近では、一般にミクロライト質であるが、その中央部は片状ホルンヘラス様あるいは黑雲母片麻岩様の岩質をしめしている。

これを顕微鏡下で観察すれば、つぎのようである。

片状ホルンヘラス様のものは、おもに、斜長石と石英から構成されており、いちじるしい斑状破砕構造をしめしている。長径 1 mm でどの卵状の形をした斜長石や石英がいくぶん方向性をしめして多数散在しており、この間を細粒の斜長石や石英が、方向性をしめながらモザイク状にうずめている。0.05〜0.5 mm でどの黒雲母や緑褐色角閃石は、集合結晶をつくっており、大型の斑状結晶をさけるよいにうねった状態で発達している。大型の斑状斜長石は、An% = 21〜35 をしめし、いくぶん汚れているが、細粒のものは新鮮である。黒雲母は、淡黄褐色のものである。これらの鉱物のほかに、少量の単斜輝石やカミントン閃石がみとめる（PL 7）。

片麻岩様のものは、おもに、1〜1.5 mm でどの斜長石、石英、黒雲母から構成されており、グラノブラストティックあるいはグラニュリティック構造をしめしている。斜長石は、An% = 21〜29 で、いくぶん汚れている。黒雲母は、前にのべたものより濃色である。また、これらの鉱物の間に、細粒の斜長石と石英がモザイク状に組み合って発達している。なお、一般に、少量の角閃石や不透明鉱物がみとめられる。

III.4 火成岩類
イドオンナップ周縁地域内には、いろいろな時期にわたる各類の火成岩類が分布している。これらの火成岩類は、日高造山運動のながい歴史の中で活動したものであり、地向斜期、造山期、造山末期のそれぞれの時期に対応するものがみとめられる。これらは、分布、産状、および岩質から、つきのようにおおまかに分類することができると。

1. スピライト質岩類
2. 緑色角閃石片状角閃岩およびソージュル石はんれい岩
3. 褐色角閃石角閃岩
4. 屈塩基性岩類
5. 脈 岩 類

III.4.1 スピライト質岩類

スピライト質岩類に属するものには、非鉱品質のものや鉱品質のものなど、いろいろの岩質のものがみとめられる。このグループの岩石類は、その主要な構成鉱物である斜長石が曹長石質であることで特長づけられる。ここでは、その産状や岩質などから、つきの3つの型に分類した。

正規型スピライト類
細粒および中粒輝結岩類
変輝緑岩

正規型スピライト類（Sp）

この型にふくめられるスピライト類は、一般に、非鉱品質の火山岩質岩である。この種の岩石にもつととも普遍的にみられるものは、いわゆる枕状熔岩である。このほかに、柱状節理をしめすものや、層状のものが少なからずみとめられる。これらの岩石類は、すでに説明したように、イドナップ層や岩滑層内に、その地質構造に平行ないしそれな規模のレンズ状の岩体で多数みられる。また、これと同質のものか、凝灰質岩層の中の角礫としても多量にみとめられる。

枕状熔岩は、この型のスピライトにとくにその発達がいちじるしいが、その名がいみす

曲線的な枕状熔岩部分分析値（新冠川）

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>55.70</td>
<td>57.15</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.26</td>
<td>n.d.</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>20.63</td>
<td>21.40</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.57</td>
<td>4.12</td>
</tr>
<tr>
<td>FeO</td>
<td>1.95</td>
<td>1.33</td>
</tr>
<tr>
<td>MgO</td>
<td>2.77</td>
<td>8.09</td>
</tr>
<tr>
<td>CaO</td>
<td>95</td>
<td>68</td>
</tr>
<tr>
<td>Na₂O</td>
<td>7.50</td>
<td>5.18</td>
</tr>
<tr>
<td>K₂O</td>
<td>47</td>
<td>1.03</td>
</tr>
<tr>
<td>H₂O(+)</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>H₂O(−)</td>
<td>39</td>
<td>58</td>
</tr>
</tbody>
</table>

（橋本誠二分析）

従来は、これらの岩石類は、すべて輝緑岩および輝緑凝灰岩として取扱われてきた。しかし、斜長石のAn%や、この岩石にふくまれるNa₂O、あるいはその特有の構造からみると、スピライトとよぶのが妥当である。
第18図 新冠川中流地域のルートマップ
(Root-map of mid-stream of Niikappugawa)
第19図 枕状熔岩
(Pillow lava) [新冠川中流]

第20図 初生形態を保存している枕状熔岩
(Pillow lava retaining primary form) [新冠川中流]
ように枕を重ねたような産状をとるものが大部分をしめている（第19図）。この枕の一つ一つは、回転三角体様の形をしており、長径30cm〜50cmでいうものが多い。しかし、場合によっては、1m以上にも達するものがみられる。このような構造は、むしろ二次的な破砕をうけたためにつくられたもので、初生的には第20図にみられるような、不規則にうねった形をとっていたのではないかと考えられる。実際にこのような産状をとるもののがほかの数カ所で観察できるし、また、まえのにべたような枕状構造をしめすものの中にも、このような形態が残されていることがある。このような構造が、どのようにしてつくられたかという問題については、いろいろの解釈がある。これについては、ここではふれないが、少なくとも、海底における火山噴出の産物であることは確かである。

枕状構造をとるこの種のスピライトは、一般に、暗赤褐色を呈するものが多い。このほかに緑色を呈するものもかなりみられる。そして、そのほとんどのが杏仁状構造をしめしている。これは、さらに、斑狀構造をしめすものと、斑晶をほとんどふくんでいないものにわけることができる。

典型的な杏仁状構造をしめしているものを顕微鏡下で観察すれば、つきのとおりである。

杏仁をとりまく基質は、一般に、ハイアロオフィティック組織をしめすことが多い。しかし、中にはインターサータル様の組織をしめすものみとめられる。斑晶はほとんど存在しないものが多いが、稀に斜長石の斑状結晶がみられる。また、輝石は、この種のものには、存在しないことが多い。斜長石は、長径0.2〜0.4mmほどのいくつかの大きさの、長柱状、板状、短柱状をしめし、ほとんどのものが、外形がくずれており、また錐曲がいちじるしい。これらの斜長石は、杏仁のまわりでは、つねにその外形に平行に配列している。このことは、現在みられる杏仁が、方解石、緑泥石、稀には沸石とよって充填されているけれども、初生的に形成された気泡であったということをしめしているものと考えられる。また、斜長石の間や、斜長石そのもの、緑泥石でいちじるしく置換されている。さらに、これらの間には、微細な粒状緑えん石やチタン石が散在している。

赤褐色を呈している岩相では、これらの間に多量の微細な赤鉄鉱やチタン鉄鉱がみとめられる（PL.8, 10, 11）。

うえにのべたものと同じように斑状岩では、斜長石が聚焦晶をつくって多数みとめられる。このほか、少量の単斜輝石の斑晶が存在している。杏仁の量は、まえのにべたものに比較して、ひじょうに少ない。石基は、柱状斜長石と単斜輝石とが領域様の組織をしめして組合わさっている。斜長石も輝石も、ともに緑泥石、緑えん石、赤鉄鉱およびチタン鉄鉱などによって、いちじるしく置換されている（PL.9）。

これまで説明してきたものは、枕状あるいは層状の産状をとっているものであるが、柱状の節理の発達しているものは、これらとは違った岩質のものである。このような産状をしめすものは、新冠川の中流域で、1カ所しかしられていない。
1本1本の柱状体は、やや放射状に拡っており、また、その断口は楕円状でしかも玉ねぎ状の模様をしめしている。暗赤褐色を呈する、ち密塊状の硬質な岩質で、小さな杏仁がわずかにみとめられる。

ビロタキシック組織をしめしており、斑品はみとめられない。構成鉱物の大部分が、0.03×0.2mm前後の大きさの柱状斜長石である。斜長石の間は、粒状の赤鉄鉱で充填されている。緑泥石は、斜長石を置換して発達しているが、また、杏仁をうずめて発達しているものもみとめられる（PL12）。

これまで説明してきたものと、いちじるしく岩質の違うスピライト第21図 柱状節理をしめす正規型スピライト
(Normal typespilite indicating columna joint) 新冠川中流
のブロックとして産することが多い。しかし、中には岩床状のものもみとめられる。一般に、灰色があらわす緑色を呈する塊状の非顕晶質岩である。

この岩石を顕微鏡下で観察すると、つぎのとおりである。

ひじょうに多量の単斜輝石と、少量の斜長石からできており、これらの間に、緑泥石で充填されている杏仁が、みとめられるものがある。単斜輝石は、證紫色を呈するチタン輝石質のもので、束状、放射状、その他いろいろの不規則な形態で組合わさっている（PL13）。斜長石は、ひじょうに汚れていて、はっきりした外形をとっていないものが多い。輝石と斜長石の間には、第22—B図のような関係がみられ、明らかに、この輝石は斜長石を置換したものである。また、これらの各鉱物の間には、緑泥石、チタン石およびチタン鉄鉱が不規則に散在している。なお、この中に、方解石-曹長石脈が発達しているものが多く、これに伴って、多量のパンベリー石がみとめられる。

まえにしめた第22—B図で、①の資料は上述のような岩質をしめすが、②ではふつうの杏仁状構造をとるスピライトで、ひじょうに少量の同質輝石がみられるにすぎない。また、他の資料では、全く斜長石がみとめられない。そして、この岩石の内部あるいはまわ

— 32 —
(Pyroxenized spilite)

(1) 多量の単斜輝石によって置き換えられている部分
(2) ほとんど輝石の形成されていないふつうのスピライト
(Common normal type spilite)

第 22-A 図 集塊質の輝緑岩帯中のスピライトブロック
(A spilite block in agglomeratic schalstein)

Py: 単斜輝石
(Monoclinic pyroxene)

Pl: 原長石質斜長石
(Albitic plagioclase)

りに、パンペリー石を伴った原長石脈が発達している。
このような事実からみて、この岩石は、正規型スピライト
の交代作用の産物とみることができる。

細粒および中粒輝緑岩 (Di)

これらの岩石は、まえに説明した正規型スピライト
類にくらべて、一般に、かなり粗粒であること、緑色を呈すること、オフィディックあるいはサブオフィディック組織をしめすことなどから区別される。一部の
ものでは柱状構造をとるものがみられるが、その大部
分のものは層状で、岩脈あるいは岩床をみえと考えられ
る。岩体の厚さは、5〜20 m でいどのものが多い。白
岩系の東側の日高西緑構造帯は、ほとんどがこの種の
岩石の複合体から構成されているものと考えられ
る。しかし、その詳細は明らかでない。現在までの調
査結果からみると、この図幅地域内では、この帯の中に凝灰質のものはほとんどと認められ
ていない。全般にきわめていちじるしい破壊をうけているために、その岩質を識別すること
とが困難である。さらに、今後の詳細な調査が必要である。この図幅地域の南東方の神威岳図幅地域内では、この帯にかなりの幅の輝緑凝灰岩が分布していることが報告されている。このような事実から考えれば、この地域では、この帯の局部が断層で持ち上げられて、一部で観察されている可能性がある。このような考え方が支える事実として、この帯の幅が狭くなっている、シュレッケスケベ沢から北部の部分では、より均質の輝緑岩が分布しているのにくらべて、シュンペツ川からヘンケアプカサンベ川にかけての地域では、かなり不均質にいろいろの岩相が入り交っているようである。さらに、この帯の幅がもっととも狭くなっている、北部のサツナイ沢では、典型的なこのタイプの輝緑岩帯が、西側の白亜系の上に30度ていどの低角度をもつ断層で、のし上がっているのが観察される。この帯の東側も断層であることから考えれば、まわりの地層と全く岩質が違うこの岩帯が、後の衝突運動のさいに、その入面を溶けいに突出して持ち上げられたとみることができる。

この輝緑岩は、岩質の上から、細粒相と中粒相にわけることができる。この両者の関係は、まだ明らかでない。細粒相の一部には、枕状構造をもつものがみとめられている。

これらを顕微鏡下で観察すれば、つぎのとおりである。

中粒相：斜長石と単斜輝石がサブオフィティック組織をしめして組合わさっている。斜長石は、長柱状のものと板状のものがあり、前者は、0.05×0.5〜0.9 mm、後者は0.2×0.6 mm ほどの大きさをもつ、より均質でかなり汚れている。長柱状のものは、正規型スピライトで普遍的にみられたような、透過形態をしめすものが多い。単斜輝石は、淡緑味を呈しており0.25 mm ほどの大きさのものが続くが、0.4 mm 以上のものもみられる。いまずい波動消光をしめしている。

これらの鉱物を置換しながら、緑泥石が発達している。また、ときに輝石を置換した不透明鉱物がかかなりみとめられる（PL 14）。細粒相：この岩相は、まえにのべた中粒相のものに比較して、斜長石がかなり細粒になっている。そして、中粒相がサブオフィティック組織をしめしているのに、この岩相は、完全なオフィティック組織をしめしている。

斜長石は、0.02×0.22〜0.3 mm ほどの長柱状のものが大部分をしめており、内部の方から緑泥石化されていくものが多く、また、一般に、わずかではあるが、透過形態をしめしている。単斜輝石は、0.4 mm 前後の大きさのもので、中粒相と同じように、淡緑色味を呈し、波動消光がいちじるしい。輝石も斜長石も、ともに緑泥石化がいちじるしい。また、これらの鉱物間には、白チタンや不透明鉱物が散在している（PL 15）。

変輝緑岩（Md）

この岩石は、シュンペツ川上流から新冠川上流地域にかけての、蛇紋岩体の近くのところ
第23図 シュンベツ川上流地域の中軸変成帯の基盤性岩類の岩相図
(Facies map of the basic rocks constituting axial metamorphic zone in the Shunbetsugawa area)
この岩石を顕微鏡下で観察すれば、つきのとおりである。

ひじょうに細かく、陽起石質角閃石、斜ゅうれん石、斜長石の不規則な集合からなり、ほとんど原岩の構造は残されていない。わずかに残存している斜長石の形から、輝緑岩質の岩石から変質したものと推察されるにすぎない。構成鉱物の大半をしめるのは、角閃石である。これは、葉片状あるいは針状形をしめし、ほとんど無色ないしは、ひじょうに淡い緑色味を帯する。拡がりいちじるしく、けんちよく波動消光をしめす。斜長石は、曹長質のもので、カルスバット双晶をしめる柱状結晶がわずかにみとめられほか、大部
分は、他の鉱物に不規則な形で残されているにすぎない。斜ゅうれん石は、自形粒状結晶をしめし、全般に散点しているが、脈状に発達しているのもみとめられる。これら各鉱物の間には、粒状のチタン石が多数散在している。このほかに、緑泥石が他鉱物を置換して発達している。

このような事実からみれば、この岩石は、変輝緑岩というよりは、角閃石化スピライトとよぶべきかもしれない。

III. 4.2 緑色角閃石片状角閃岩（Ag）およびソーシュル石はんれい岩（Sg）

この2つの岩石は、いままでは、はんれい角閃岩という名称で、一括して取扱われてきている。たしかに、シュンベツ川本流からその北部にかけての地域では、これら2つの岩体は、相互に漸移するような関係をしめしている。しかし、1）南部のコイポクピチャリ川地域では、この両者はセプタによって境界されている；2）ペッビリガイ沢附近では、セプタはみられなかったが、剪断帯で境界されている；3）これら2つの岩体の角礫岩は、それぞれの構造がいちじるしく違う*；などの諸点からみると、2つの岩体に分けて取扱うべきであると考えられる。

緑色角閃石片状角礫岩

この岩石は、まえに説明した緑色片岩の東側に、これと平行して帯状に分布している。南部地域では、幅500m内外であるが、北部で1000m以上にも達し、隣接する幌尻岳脇幅地域内にかけて、さらにその幅を増大している。

この岩石は、濃緑色を呈し、片状構造の発達のいちじるしい角礫片岩様の岩質のものである。この岩帯は、さらに、岩質および構造のそれぞれ違う3つの岩相部にわけることが
できる。これらの各相は、相互にほぼ平行な帯状配置をしめしており、剪断帯によって、

* これらの諸関係は、幌尻岳脇幅地域でも観察することができる。
それぞれ区別されている。
もっとも西側に分布しているのは、いちじるしい微細曲構造をしめし、しかも、片理にそって緑れん石が縞状に発達している岩相である。ベッピリガイ沢から北部の地域では、50〜100mほどの幅で分布しているのがみられるが、南部地域では明らかでない。
片理の発達がいちじるしく、角閃石の平行配列による線構造は、ゆるいNおとしを、また、摺曲軸は、かなり変化するが、一般に、E-Wの方向性をしめしている。

第24図 緑色角閃石片状角閃岩帯の西側に発達している緑れん石角閃岩相
(Epidote amphibolite developing at the western side of green hornblende schistose amphibolite)

顕微鏡下では、0.1〜0.2mmの大きさの緑れん石がモザイクに組合、その粒間をうず

Ep：緑簾石濃集プール
(Concentrated pool of epidote)
Fa：細微の角閃石と斜長石からなる部分
(The part consisting of fine grained hornblende and plagioclase)
Ca：粗粒の角閃石が発達している部分
(The part consisting of coarse grained hornblende)
めている細粒角閃石, 少量の斜長石をともなっている部分, 細粒の角閃石および斜長石からなりたっている部分が, 組合わさって縞状構造を形成している。角閃石は, 草緑色, Y=帯緑黄色, X=淡黄色の多色性をしめしている。また, これら各鉱物を置換して, モザイク状の石英がかなりみとめられる。そして, 部分的には, 細脈状にあるいはレンズ状に発達している。なお, 緑れん石にともなって, チタン鉱鉱およびチタン石がみとめられる。

まえにのべたような, いちじるしい微褶曲構造と緑れん石の濃集縞によって持ちょうづけられている岩相の東側には, 剪断帯をはさんで, この角閃岩体の主体となる岩相部が発達している。この岩相部は, 一般に, 西側が50°～70°Eの傾斜をとる片理が発達しているのに対し, 東側では, 20°～30°Eと傾斜がゆるやかになり, それとともに, 優白質のプチグマティック脈の発達がめだっている。角閃石の平行配列による縞構造は, 西端部ではS

第25図 緑色角閃石片状角閃岩のプチグマティック脈の発達している岩相
(Green hornblende schistore amphibolite ocharactered by ptigmatic veins)

落しであり, 中央部ではN—S方向で水平であり, 東端附近ではN落しである。ともに,ひじょうにゆるい傾斜をしめしている。この片状角閃岩の, 大半をしめている, プチグマティック脈の発達している岩相を顕微鏡下で観察すれば, つぎのとおりである。

圧倒的に多量の緑色角閃石が, C軸をそろえて方向配列しており, ネマトプラスティック組織をしめしている。この間に, 斜長石と石英から構成されている優白質部が, 縞状に発達しており, 部分的には, レンズ状に拡がっているのがみとめられる。優白質部は, 0.3～0.8 mm, 稀には3 mm でいどの板状斜長石と, この間をうずめるモザイク状の石英,
および、少量の角閃石からできている。この石英は、斜長石や角閃石をいちじるしく置換している。また、破砕されている大型の斜長石のまわりを粒状のものがとりまき、モルタル組織をつくっている。角閃石は、ポイキリティック構造をしめすものが多い。そして、一般に、斜長石の外形に影響されて、このまわりにうねるような形で発達している。一方、優黒質部は、大部分が0.3〜0.5 mmほどの柱状角閃石から構成されており、この間に0.3 mm でいどの斜長石が少量みとめられる。また、チタン石の粒状集合体がレンズ状に発達している。斜長石は、優黒質部のものは一般によこされているが、どちらの部分でもAn=25〜38% ていどで、あまり大差はみられない。角閃石は、Z＝帯青草緑色〜濃草緑色、Y＝帯黄緑色、X＝淡黄色の多色性をしめしている（PL16）。

まえにのべたプチグマティック脈の発達している岩質のものから連続していて、その西側には、プチグマティック脈のみとめられない岩相が、50〜100m の幅で発達している。

この岩相のものは、モザイク状に組合わせている石英（0.1〜0.3 mm）が多量にみとめられ、また、この間に残存している斜長石は、いちじるしく汚潤している。さらに、緑れん石や斜ゅうれん石、チタン石などの粒状結晶が、局所的に濃集しているのがみとめられる。

したがって、この岩相は、西側のまえにのべた緑れん石綿の発達している岩相に、よくにた性質をしめすようである。

このような事実は、片状角閃岩にプチグマティック脈をもたらした運動と、この岩帯の西側に、石英が濃集して緑れん石が形成された作用が、きわめて密接な関係をもっていったことをしめすものと考えられる。

ソーシュル石はんれい岩

ソーシュル石はんれい岩は、変成帯の西翼に帯状に分布しているものと、変成帯の西側の地域にみられる蛇紋岩域内帯の中に、小さなレンズ状岩体をつくって分布しているものの2つに区別される。これらは、産状や岩質に、かなりの違いがみとめられるが、ともに、ソーシュル石化した斜長石をもっていることで特徴づけられる。

変成帯に分布しているものは、すでに説明したように、緑色角閃石片状角閃岩帯と褐色角閃石角閃岩帯の間に位置している。南端では幅1 km でいどであるが、北端では2 km に増大している。

この岩石は、典型的なソーシュル石はんれい岩相と、それを置き換えて発達している。葉理構造をしめす交代岩相、および角閃岩相とかなりなつっている。

典型的なソーシュル石はんれい岩相は、この岩帯中の数力所でみることができる。ベッピリガイ沢では、はんれい岩構造をもたらして残っている塊状の中に不規則に角閃石が形成されていて、眼球状構造をしめしている。さらに、この南部のシカシナイ山麓には、ソーシ
塊状の典型的なソシュール石はんれい岩相
(火成岩構造を強く保持している)
M: やや細粒の交代岩相

第25図 ソシュール石はんれい岩の交代相中に残存している典型的なソシュール石はんれい岩

Typical saussurite gabbro holding igneous texture remained in metasomatic facies

ジュベツ川上流

ジュベツ川上流の斜長石を含むかんらん石はんれい岩の転石が多量にみとめられる。ソジュール石はんれい岩についてのこれまでの知識から推察すれば、このかんらん岩も原岩の一つであったと考えられるが、この図幅地域では、その関係は明らかでない。

眼球状の構造をしめす塊状部を顕微鏡下で観察すれば、つきのとおりである。

おもに斜長石と角閃石とから構成されている。斜長石は、1〜1.5 mm ていどの柱状自形結晶で、カルスパット双晶がいちじるしい。そして、角閃石で置換されてはいるが、はんれい岩構造をよく残している。また、斜長石は、An=45〜67 %のものである。角閃石は、一般に、葉片状〜板状の形をしめし、斜長石を置き換えて発達しているが、この大型結晶の中には、虫食い状に単斜輝石を残しているものがみとめられる。また、一部では、ウラル石質の角閃石が自形柱状の斜長石をふくんでいて、原岩のオフィティッタ組織を残しているものがみとめられる。角閃石は、Z=淡緑色、Y=X=淡黄緑色の多色性をしめしている。これらの鉱物の間には、モザイク状の斜長石がみとめられるが、これは、角閃石とほぼ同時期に生成したものとおもわれる。An=44〜53 %である（P

5 cm

Sau: 塊状の典型的なソシュール石はんれい岩相
（火成岩構造を強く保持している）
かんらん石はもれい岩相を顕微鏡下で観察すれば、つきのとおりである。

構成鉱物の大部分が2～4 mm の大きさの斜長石で、この間に 0.5～2 mm の不規則な形をとるかんらん石と単斜輝石がみとめられる。斜長石は、半自形の柱状結晶で、汚れており、An=49～75％のものである。かんらん石は、そのまわりが、輝石と斜長石とでつくるシンプレクタイトで囲まれている。輝石は、裂開のいちじるしく発達している異化石である。そして、そのまわりに陽起石のケリファイト紡をつくっており、さらにその外側には、陽起石と斜長石とから構成されているシンプレクタイトを形成している（PL 18）。

これまでのべてきた岩相は、かなり原岩のはもれい岩構造を残している塊状岩であるのに対して、交代岩相では、いちじるしく変理構造が発達している。この地域のソーシュル石はもれい岩体の主要部分をしめているのは、むしろ、この交代相であるようである。一般に、優白質の粗粒な岩相をしめし、角閃石の大型結晶が多数みとめられる。

主として、斜長石と角閃石から構成されているが、これらは、それぞれ大型と小型の結晶にわかれている。大型の斜長石は、1～2 mm の大きさをしめし、ひじょうによれている。一般に、自形性がつよく、しかも、カルスパット双晶がみられることからも、原岩の変晶と考えられる。An=47～65％。このような斜長石を置換しながら、0.2 ～0.6 mm でいどの新鮮な卵状斜長石が多量にできている。この斜長石は、粒状角閃石を包かし、クラノナブラスティックに組合っており、しかも一方向に長軸をそろえている。

第27図 ソーシュル石はもれい岩（交代相）とその中にみられる角閃岩相
A occurrence of saussurite gabbro
(metasomatic facies) and amphibolite
[シュンベツ川上流]
第28図 ソーシュール石はんれい岩（交代相）の中にみられる角閃岩相
（第25図の一部の拡大写真）
Stratified amphibolite found in saussurite gabbro (metasomatic facies)
[シュンペツ川上流]

第29図 ソーシュール石はんれい岩（交代相）中にブロックで残されている
角閃岩相部
Amphibolite block remained in saussurite gabbro
(metasomatic facies)
[シュンペツ川上流]
また、角閃石は、1～3 mmの大型の板状結晶と、0.05 × 0.3～0.06 × 0.6 mmの長柱状結晶にわけられる。大型のものは、汚れた斜長石を置換しているが、卵状の斜長石には逆に置換されている。柱状の角閃石は、卵状の斜長石の間に発達しており、これらはほぼ同時の生成とみられる。これらの角閃石は、同質とみられ、Z=緑色、Y=X淡緑黄色の多色性をしめす。なお、これらの各鉱物の間には、粒状のチタン石のレンズ状集合体が発達している（PL 19）。

ソーシュノレ石はんれい岩帯中には、層状やレンズ状などのいろいろの産状をしめして角閃岩相が発達している。この角閃岩は、明らかに、典型的なソーシュノレ石はんれい岩から変成したものである。岩質の点では、この角閃岩相と、まえに説明した片状角閃岩とは、それほど大きな違いはないようである。しかし、片状角閃岩に特有に発達しているブチグマティック脈は、この岩相にほとんどとめられない。さらに、この岩相のほうが、いくらん粗粒であり、また、わずかではあるが、片状構造が弱くにみのがれる。しかし、とくにシュンペツ川本流流域では、片状角閃岩とソーシュノレ石はんれい岩との境界が明らかでない。これは、この附近にひろく発達している交代相が、片状角閃岩とこの角閃岩相を、ともに、いちじるしく交代してきているためと考えられる。そのために、交代相の中に残存している角閃岩が、どちらのタイプのものか区別できないようになっているのである。顕微鏡下の観察では、片状角閃岩が、角閃石のネマトブラスティック組織で持ちようがけられるのに対して、この角閃岩相は、一般に、グラノブラスティック組織をしめしている。また、角閃石の性質も、いくらん違うようである。そして、さらに、斜長石の量もかなり多いようにみられる。

これまでのべてきたことから考えると、緑色角閃石片状角閃岩は、ソーシュノレ石はんれい岩の角閃岩代作用の産物ではなくて、もともと別個の岩体をつくっていたものと推定される。しかし、まだ未解決の問題が多くのこられており、今後の精査がのぞまれる。

蛇紋岩帯に観察されるソーシュノレ石はんれい岩は、蛇紋岩にとり囲まれて、ブロック状の産状をしめしている。

0.3 × 1.4～0.6 × 0.8 mm いどの、板状または長柱状の斜長石が、はんれい岩構造をとまって組合わさっており、これらの間に、板状または葉片状の角閃石が不規則に組って発達している。斜長石はソーシュノレ石化がいちじるしく、アルバイトおよびカルスパット長石をしめている。An=34～42%、角閃石は、内部に斜長石の細粒の柱状結晶を包かかっているポイクリティックなものが多い。また、大型のものでは、虫食い状に単斜輝石を残しているのがみとめられる。X=黄緑色、Y=青緑色の多色性をしめす。これらの各鉱物を置換して、ぶどう石、斜ゆうれん石、緑れん石、および緑色緑泥石が不規則に発達している。
III.4.3 褐色角閃石角閃岩（Ab）

図幅地域の北東端地域に、NNW—SSEの方向性をとつれて帯状に分布している。西側のソーセル石はんれい岩とは、片麻岩質のセプタをはさんで焼きかれている。この岩帯は、南部地域では500m以上の幅をもっているが、北部の幌尻図幅地域との境界部附近では、レンズ状の小岩体にわかれてゆる傾向がみとめられる。

優黒色を呈しており、N—S; 50〜60°Eの走向・傾斜をしめしている片周がいちじるしく発達している。局所的には、優白質の結晶が発達して片麻岩様の岩相をしめす部分がみとめられる。また、西側のセプタに接する附近では、不規則に褶曲構造が発達している。また、部分的に、石灰質珪酸塩鉱物のプーロラ状の集合体がみとめられる。

この岩石を顕微鏡下で観察すれば、つきのとおりである。

0.5〜1.5mm ていどの半白形を呈する板状の角閃石と、0.5〜1mm ていどの斜長石が組合わさって、グラノプラスティック組織をしめている。斜長石はパニディオモルフ構造をしめしており、部分的にはいちらしろしくソーセル石化している。An=22〜35%。角閃石には、ボイキリティックな結晶がわずかにみとめられる。Z=淡褐色〜帯緑褐色、Y=X=帯緑褐色の多色性をしめしている。また、これらの結晶の間には、いろいろの大きさのモザイク石英が発達していることがある。

片麻岩状の構造をしめしている岩質部では、きわめて綿結の黒雲母が多量みとめられる（PL 20）。

また、石英質珪酸鉱物の集合体は、0.1〜0.3mm 大きさの多量の透輝石と、灰長石質の斜長石、石英、斜雲母および黒雲母などが、グラノプラスティックに組合わさっている。

なお、神居古津構造帯の蛇紋岩近入帯のあちらこちらに、緑色角閃石と斜長石がグラノプラスティックに組合っている角閃岩の転石がみとめられる。まえに、ちょっとふれた、ラんせん石を生じている近くに発達しているのも、同質の角閃岩とみられるが、ここでは、多量の石英が他鉱物を置換して発達している。

III.4.4 超塩基性岩類

この図幅地域内には、いたるところでスピラル性岩類が分布している。この進入の形態をみると、ほとんどの場合、まわりの地層に対して低角度で進入している。したかつて、低角度の逆断層にそって進入活動が行なわれたものと考えられる。この岩類は、かんらん岩と蛇紋岩の2つに分類される。

かんらん岩（Pe）

この岩体は、変成帯の緑色角閃石片状角閃岩と東側のセプタとの間に分布している。この地域では、コイボクシシリ川流域でみられるだけである。小規模なレンズ状の岩体
をつくっており、風化面が黄褐色を呈することから、遠方からでもすぐ判別することができる。新鮮な面では暗緑色を呈し、塊状緻密な岩質で、規則正しい節理系が発達している。この岩石を顕微鏡下で観察すれば、つきのとおりである。

大部分がかんらん石からできており、このほか、輝石およびかんらん石から変ったと考えられる蛇紋石や、さらにこれを置換している透角閃石がかかなりみとめられる。かんらん石は、1cm にも達し、いわゆるメッシュ構造をしめしている。これらのかんらん石結晶の間には、輝石の擬晶をもつ緑雲母が少量みられる。この緑雲母はさらに bowlingite に変化している。透角閃石は、葉片状あるいは柱状の結晶形をもち、一部ではモザイク状に組合、あるいは単独に、ほかの鉱物類を置換して成長している。また、これらの間に、少量の尖晶石と磁鉄鉱粒がみとめられる。これらの鉱物粒のまわりには、最末期とみられる角閃石の柱状結晶が発達している。

蛇紋岩（Sr）

蛇紋岩は、いろいろの規模の進入体をつくって、多数みられる。神居古沢帯側では 2 帯
みとめられる。いずれもおよそ NNW—SSE の方向性をとり、変成帯の分布方向にはほぼ平行に配列している。この場合、2つの蛇紋岩侵入帯にはさまれた地域に分布している地層は、ひじょうに緩い褶曲構造をしみじしている。一方、日高帯側では、シュンペツ川本流から南側の地域では、日高前線構造帯の東翼にそって進行している。しかし、ペンケアラカサンペ川からパンペツ川流域にかけてのイドンナップ層の板状構造帯では、板状構造に平行に多くの侵入岩体がみとめられる。また、シュンペツ川本流部から北の地域では、2つの侵入帯にわかれており、これらは隣接する幌児岳図幅地域内にまでのびている。

この地域の蛇紋岩体は、全般に剪断運動の影響をうけている。そのために片状化がいちじるしく、油脂状光沢をしみじす葉片状蛇紋岩にかわっているものが多いく、塊状の岩質のもので、おもに、かんらん石および輝石の亜晶をとる板温石と球布石、からできている。そして、これらの間に、クロム鉄鉱鉱や片状の磁鉱鉱が散点している。

日高帯に分布しているものには、多くの新鮮な異常石がみとめられる。また、葉状状の岩質のものでは、かんらん石の亜晶をとる板温石は、わずかにみられるだけで、大部分が不規則な板状あるいは片状の板温石だけからできている。そして、いちじるしい方向性をしみじしている。

III. 4.5 脈岩類

この地域に発達している脈岩類には、つぎののようなものがある。

- 粗粒輝緑岩
- 微角輝緑岩
- ドロニエム岩

これらの脈岩類は、イドンナップ層あるいは岩滑水層を貫ぬいているが、白亜系の分布地域にはみとめられない。

粗粒輝緑岩（Cd）

この岩石は、ふつうは、2〜4m ていどの厚さのものであるが、時には 10m 以上に達するものがある。一般に、岩床状侵入岩体をつくつっているが、岩脈状のものもみられる。輝緑凝灰岩やスピライト質岩類を貫ぬき、蛇紋岩によりこまれている。おそらくは、蛇紋岩の侵入時期よりは早期であるが、この地域の造構運動のかなり後期の侵入岩とみられる。変異質のひじょうに粗粒な塊状岩である。

この岩石を顕微鏡下で観察すれば、つぎのとおりである。

* 神威岳図幅地域のイベツーレダトイ構造線にたるるものである。
** 美瑛図幅地域内において、いわゆる神宮古潭結晶片岩を貫いていた同質の輝緑岩がみられている。
主成分鉱物としては、斜長石と単斜輝石とから構成されており、このほか、緑色角閃石、しん灰石、緑泥石、板温石、ボーリンジャイト、および不透明鉱物をともなっている。粒状の単斜輝石（長径2mm前後）と板状あるいは長柱状の斜長石（0.2×1.5mm）が、典型的なオフィジック組織をしめして組合わさっている。輝石は、Z=明紫色、Y=X=淡紫色の多色性をしめており、チタン輝石質のものである。割目の発達がいちじるしく、ブロック状の消光をしめすものが大部分をしめている。斜長石は、全般にソーシュル石化しているが、その変質の度合は内部ほどいちじるしい。

緑色角閃石は、輝石を置換していてその量はわずかである。Z=濃青緑色、X=緑色の多色性をしめす。緑泥石が、これらの鉱物を置換して不規則に変成している（PL 21）。

また、一部のサンプルでは、単斜輝石を置換して多量の褐色角閃石が生成しているのがみとめられる。この岩石は、まえにのべたものは遠い、インターナーシュル状の構造をしめしている。そして、角閃石、輝石、斜長石などの鉱物の間に、かんらん石の仮晶と考えられる円形の板温石およびbowlingiteが多くみとめられる。

このような事実は、この岩石が、かんらん石輝緑岩様の岩石であったことをしめしている。

微閃緑岩 (Mi)
この岩石は、図幅地域の南西部の岩清水付近の蛇紋岩近入帯に多くみられるほか、北東部地域でも蛇紋岩にともなわれてわずかにみとめられる。一般に、幅5m前後の岩脈で貫入しているものが多い。しかし、中には50m以上に及ぶようなものもある。変成の塊状岩であるが、蛇紋岩の中に貫入しているものは、全般にいちじるしく蛇紋石化されている。

おもに、斜長石、角閃石および単斜輝石からできている。斜長石は、自形の短柱状あるいは板状結晶で、内部はかすかに多形物質をふくんでおり、累帯構造様の形態をしめしている。いちじるしくソーシュル石化しているものでは、その形状の不明なものが多々。角閃石は、はっきりした斑状を通じている。輝石は、不規則に黄色のものがみとめられる。輝石は、いちじるしく裂開の発達している異剥石である。これらの各鉱物は、緑泥石で、いちじるしく置換されている。

トロニエム岩 (Tr)
この図幅地域内で、トロニエム岩が貫入しているのは二部台帯である。この岩石は、ひじょうに不規則に変成形態をしめしており、まわりの岩石に、小範囲にあるが熱変成をあたえている。また、蛇紋岩ブロックをとりこんでおり、明らかに蛇紋岩貫入後の変成岩である。

この岩石を顕微鏡下でみれば、つぎのとおりである。

斜長石斑晶を多量にふくむ、はっきりした変成機構をしめしている。斜長石斑晶は、自形の柱状または板状結晶で、0.2×0.4mm～0.6×1.4mmの大きさである。そして,
この種の岩石に特有の累帯構造がいちじるしく、また、カルスパット双晶型式のものがその大部分をしめる。一般に、巣状物質をふくんで汚れているものが多い。これらの間を埋めている石基は、ひじように汚れた、細粒の不規則な形をした斜長石と石英から構成されており、この間に、細粒のきれいな短冊状の斜長石が多くみられる。また、いちじるしく緑泥石化した黒雲母が少量散在している（PL 22）。

III. 5 第四系

第四系は、各河川にそって発達している洪積期に属する段丘堆積物と氷河期堆積物がある。

段丘堆積物

この地域を流れている大きな河川の沿岸地域は、段丘が分布している。とくに、白雲系の分布している地域に、その発達がいちじるしい。これらは、河床面からの比高によって、つぎの2つにわけられる。

第2河段丘堆積物

第1河段丘堆積物

第2河段丘堆積物（D2）

第2河段丘堆積物は、現河岸より約20〜60 mの高さで発達しており、最もよく分布している。基底部には、多量の大礁をふくむ礁層が卓越しており、その上部にくらべて、大きな礁でできている礁層、砂層および粘土層が発達している。

第1河段丘堆積物（D1）

現河床面から約120〜180 mといろの高さの平垣面をつくって発達している。一般に、拳大の礁をふくむ礁層、砂層、および粘土層から構成されている。

氷期堆積物（Gd）

図幅地域の北東隅のナメワッカ岳の北側には、圈谷が発達しており、圈谷底の末端部には水堆積がみられる。この圈谷の形成時期は、トッパベツ氷期に対比されるものと考えられる。

なお、この図幅地域には、地質図に記してないが、第2河段丘をおおって、総計約4 mでいどの大層をもつ火山灰層が広く分布している。この火山灰層は、おおまかに、3層にわけることができ、このうち、最上部のものは、腐蝕土の下位に発達しており、灰白色を呈する。中位のものは、やや粗粒のもので、黄褐色を呈している。最下位のものは、層堆積層の中に介在しており、二次堆積によるものと考えられる層理が発達している。黄褐色を呈しているが、この中に、灰白色のものが層状に介在している。これらは、いま
までの知識によれば、樽前山統火山噴出物とみられる。

III.6 地質構造および地史

第31図 地質構造図（Geologic structural map）

1) 9) 10)
この図幅地域には、これまでのべてきたように、ジュラ紀あるいはトリアス紀から新第三紀にいたる堆積岩類が発達している。また、いずれの時期の火成岩類の活動、および変成岩類の形成がおこなわれている。

とくに、これらの岩石類がけんちょな帯状配列をしめしていることは、ひじょうに持ちょうのある事実として注目されなければならない。これらについて、各構造単位にわたって説明を加える。

神居古沢構造帯

この構造帯は、すでにのべたように、日高地向斜堆積物の上部層である岩清水層、すなわち、厚い輝緑凝灰岩層の発達している地帯である。このような堆積物は、明らかにスピライト質岩類のはげしい火山活動の産物と考えられる。これらの噴出の中心帯が、どこに、どのような配列をしているかということは、まだ明らかにされていない。多くの噴出帯が雁行状の配列をしているらしいということは、充分に推察することができる。したがって、この図幅地域もふくめて、神居古沢帯の第1の持ちょうは、もっとも初生的な構造として、スピライト質岩類が雁行状に配列していたということである。表現されるようである。第2の持ちょうは、蛇紋岩の進入形態から読みとれるように、NNW—SSE の方向性をとる剪断帯の発達していることである。剪断帯としてもつともけんちょなものは、新冠川中流地域に分布しているイ
ドンナップ層の下盤側に発達しているものである。この剪断帯は、まえにもふれたが、幅約30m内外のミロナイト帯をともなっているものである。そして、西側に彎曲した形をしめしており、その傾斜は30°E内外のひじように緩いもので、一つの衝断層とみることができる。この西側には、2本の蛇紋岩侵入帯が雁行状に発達している。この場合も、蛇紋岩の侵入境界面は、ひじように緩い東傾斜をしめしている。しかも、うえにのべたイドンナップ層の下盤側にみられたと同じように、下盤側に、ミロナイト様の破砕岩あるいは準片岩が形成されている。第3の特點は、これらの剪断带には含まれている地域が、いちじるしい褶曲構造をしめしていることである。この褶曲軸には、N－S性とE－W性のものがみとめられるが、まだ、この褶曲構造の要素は充分に解明されていない。しかしながら、2と3の特點からみると、この地域の蛇紋岩の逆入は、褶曲運動の末期と推定される。

日高西縁構造帯

この構造帯は、従来、単純に日高帯の輝緑凝灰岩帯として取り扱われてきたが、この図幅地域においては、輝緑岩の複合侵入帯としてみるとることができる。また、この構造帯の西側に接して、白亜系が分布しており、しかも、下部エゾ層群がこの位置に断続的ではあるが分布しているということは、注目に値する事実であろう。この褶曲構造帯は、全体にいちじるしく破砕されており、しかも白亜系の上に低角度の衝断層でのし上っている。この事実と、南東に位置する神威岳図幅地域におけるこの構造帯に凝灰質の岩脈が発達していることとを考え合わせることは、つきのべるような興味ある問題を提起するようである。すなわち、この構造帯の断層運動による上昇量の差によって、ある地域では下部相（輝緑岩相）があらわれ、また、ある地域では上部相（火山凝灰岩相）が残されているという考え方ができるのではないか、ということである。

日高前縁褶曲帯

この褶曲帯は、西緑帯と中軸変成帯の間に発達している。この図幅地域では、イドンナップ層の主要な分布地域に相当している。神居古斑帯側に比較して、より傾立した複雑な褶曲帯を形成している。図幅地域の南部と北部とでは、ペンケアブカサンベ川の上流を横切るN60°E方向性をもつ断層を境にして、その構造に違いがみられる。南部地域の構造は、大きくみると、南東側に口を開いたベイサン状構造とみることができる。また、この地域に進入している蛇紋岩も、このような構造に支配された形態をしめしている。一方、北部地域では、ほぼNNW－SSEの方向をしめしてはいるが、きわめていちじるしい褶曲構造を形成しているものとみられ、その構造解析はきわめて困難である。
えにのべたように、大きくみると、イドンナップ岳を中心とする傾立背斜状構造が推定され、その両側の地域は、おそらくは、向斜構造をつくっているものと考えられる。蛇紋岩体は、このような構造の境界にできた剪断帯にそって進展したものとみることができる。また、新第三系の分布地域が、基盤の向斜構造をとる地域と一致していることも興味あることであろう。この褶曲帯と変成帯とは、衝断断層で接しているが、北東部側では、明らかに両者の構造は斜交している。

日高中軸変成帯

この図幅地域に分布している変成帯にみられる諸岩石は、すでにのべたように、ほとんどが塩基性火成岩類である。これらは、きわめてけんちよく帯状配列をとっている。このうち、緑色角閃石片状角閃岩には、いちじるしい微褶曲構造が発達しており、その褶曲軸は N—S でほとんどが水平に近い。その他の岩石には、このような褶曲構造は発達していない。

白雲系

この地域の白雲系については、すでに、小山内、松下等によって報告されている。白雲系の構造は、大きくみると、大きな向斜構造をとっているものとみられる。しかし、すでにのべたように東西両翼でいくぶん違った非対称の形態を示している。これを、さらに詳しく観察するならば、そこには、きわめて複雑な褶曲構造をみることができる。地質図でみられる構造は、ほとんどが N—S 性の方向性をもつ褶曲軸が主要なものであるが、この細部においては、数多くの E—W 性の方向性をもつ褶曲構造が発達している。このような現象は、基盤層の構造にもみとめられる。しかし、白雲系の構成は、基盤構造とはかなりの違いがあるように考えられる。このような構造の差異は、ただ白雲系を上部構造としてみるだけではなく、白雲系の堆積以前、少なくとも中部エゾ層群の堆積以前に、何らかの褶曲運動があったことを意味しているものであろう。

III.6.2 地 史

北海道本島の中心部を南北に通る脊梁山脈を中心に、基盤を構成しているものとみられる古期岩類が帯状に分布している。この地域は、北海道中軸帯とよばれており、日本におけるアルプス期の造山運動、日高造山運動を中心にとして生成、発展の過程をたどった地域である。この造構造運動は、ジュラ紀末からはじまり、白雲紀末期にわたってさかんに活動し、おそらくは、白雲系には、変成作用や火成作用はほとんど経過し、その後、新第三紀にかけて、いちじるしい隆起運動がおこなわれたと考えられている。

イドンナップ図幅地域内の地史も、ほぼまえにのべたような歴史過程をとげて確立された
ものとみることができると、この地域の地史を、造構史的に、大まか、つぎのように分類して説明を加える。

i 地向斜期

ii 造山期

iii 造山末期（断裂期）

i 地向斜期

地向斜期にみられるイドンナップ層および岩清水層で代表される、膨大な堆積岩類が発達している。イドンナップ層の厚さは、この地域では約3000mと推定されるが、さらにその下位に膨大な厚さの堆積岩類が横たわっていると考えられるので、全体の層厚は相当の厚さに達するものと推定される。スピライト質岩類の活動は、したがって、地向斜堆積の後期に行なわれたとみることができる。おそらく、その初期には、神居古構造帯の地域で広範囲にわたる。雁行状の裂が噴出が行なわれ、わずかにおおくって、日高西構造帯にそって火成活動が行なわれたものと考えられる。また、はっきりした証拠はないが、中軸変成帯地域においても、この時期には同じ岩系の岩石類が活動したのではないか、との疑いがもたれる。このような火成活動を契機として、つつも特殊な条件をそなえたいた地域が、その後の造山運動の中心帯になったものであろう。

ii 造山期

造山期には、日高変成帯を中心として、いろいろの変成作用および火成活動がおこなわれた。この時期の運動は、中軸変成帯と、その西側の地域とでは、いちじるしくその変成を異にしている。この地域の中軸変成帯は、分布が広く、しかも塩基性火成岩類がその大部分をなししているので、片麻岩類やミグマタイト類との関係は明らかではない。このような意味で、この地域においては中軸変成帯を中心にした火成活動や変成作用についてのべるのは適当でない。しかし、これまで行なわれたほかの地域の研究結果からみれば、褐色角閃石角閃岩がもっとも初期の近入岩（輝緑岩）で、片麻岩類の形成とほぼ同時期に角閃岩化されたものとみられる。緑色角閃石片状角閃岩およびソーシェル石はんれい岩については、まだ未解決の問題が多く残されていて、現段階では明確な位置づけは困難である。従来までの解釈によれば、ソーシェル石はんれい岩は後期の近入岩とみられている。しかし、緑色角閃石片状角閃岩には、早期の輝緑岩源のものがあるのではないかと疑いつつよい。緑色片岩は衝上運動に関係した変成作用の後期に形成されたものと考えられる。また、この変成帯に近入しているかんらん岩は、ソーシェル石はんれい岩の近入よりもおくれた時期で、おそらく衝上運動に関係するものではないかと考えられる。
中軸変成帯の西側の地域、日高前線緑帯および神居古層構造帯は、蛇紋岩の活動によって特異な変成が起こされている。蛇紋岩体を中心とみた火成活動の順序は、大抵そぎのように考えられる。

粗粒輝緑岩
ソーシェル石はんれい岩
蛇紋岩
微閃緑岩
トロニエム岩

このような火成活動の時代はこの地域では明らかでない。しかし、神居古層構造帯の北部地域の調査資料によれば、蛇紋岩が中部エゾ層群を貫いているおそれがあると理解される。また、トロニエム岩の場合でも、中部エゾ層群を貫いていることが確認されている。また、蛇紋岩が中部エゾ層群の背斜構造の翼部に進入していることが明らかにされている。このような事実から考えれば、少なくとも、蛇紋岩の進入は、中部エゾ層群を締曲させた構造運動に関係しているとみることができる。この図幅地域では、白亜系の分布地域には蛇紋岩はみられないが、基盤層の締曲構造の翼部に進入するというように似た性質がみられる。したがって、蛇紋岩の進入が、ほぼ同一の時期とみられるので、基盤層の締曲構造には、中部エゾ層群を締曲させた構造要素がそれ以前のものに加算されてあらわれているとみななければならない。

現状においては、変成帯内部の火成活動や変成作用と、そのまわりの地域のそれとの関係が明らかである。将来、蛇紋岩とかんらん岩、また、両地域の角閃岩やソーシェル石はんれい岩などの関係が明らかにされ、さらに、徹底的な構造解析がおこなわれること、それらの問題は解明できるであろう。

したがって現段階では、各種の変成作用や火成作用が行なわれた時期、つまり造山期は、白亜紀の全期あるいは、古第三紀にまでかかることと推定するにとどめたい。

iii 造山末期

造岩末期は、火成作用や変成作用が終り、このような活動をなした地域がいちじるしい上昇運動に転化し、そして、いろいろの規模の断層によって地質構造がここわられていく時期にあたる。

この地域では、はじめにN—S性の一般構造に平行な剪断運動や断層運動が行なわれたとみられる。このような運動は、おもに、異種岩石の境界部で強調されている。この場合、

* この場合、上部エゾ層群も中部エゾ層群と同様の構造をしめすとみられている。したがって、蛇紋岩の進入が、あるいは、かなり新しい時代に入る可能性もあるとわもわれる。
第33図 背末期とみられる断層系の発達の状態（神間古褶造帯）
(System of faults developing at the latest stage (Kamuikotan tectonic zone)
【新冠川中流】
おそらく、それ以前にすでに形成されたとおもわれる断面にそって、転移しているものがかなりあるものと考えられる。これらの後に、N60°EおよびN60°W方向の断層運動が行なわれている。この断層は、断層面を横断するところでは、幅広い破砕帯をつくっているが、線状を横切る位置では、余り破砕帯をつくっていない。そして、一番最後に、E-W系の方向性をとるブロック断層運動が活発に行なわれ、各地層は、ずつと大に切り裂かれていく。一般的には、これらの各断層は、中軸変成帯外の地域でとくにいちじるしいようである。なお、これらの断層運動の時代は、川端期以後と考えられる。

IV 応用 地質

この図幅地域内には、みるべき鉱床は賦存していない。それでもこの地域に賦存している鉱床としては、中軸変成帯内の含銅硫化鉄鉱床、蛇紋岩中のクロ鉱鉱床のほかに、イドンナップ層中の石灰石鉱床などがあげられる。このほか、神居古津構造帯の蛇紋岩層内に、いちじるしい鉱床がみられる。また、ペンケアバ山スル川上流の日高西線構造帯の輝緑岩中に、含金石英脈や水銀鉱床が発見されていることが伝えられているが、今回の調査では確認できなかった。

1 含銅硫化鉄鉱床（高隆鉱山）（Cu）

この鉱床は、図幅地域の東南端コイボクシベチャリ川中流で、静内からシベチャリ川をさかのぼること約50kmのところにある。この鉱床は、かなり以前から知られていたものであるが、地理的な悪条件のためにわずかに地表調査がおこなわれているにすぎない。現在は、本流および支流の河岸に露出がみられるだけである。

鉱床は、変成帯中のソーチェル石はんれい岩帯の中にある。その上、ソーチェル石はんれい岩と緑色角閃石片状角閃岩帯との間に発達するセプタの約300m東方にあたり、鉱床の胚胎する母岩はソーチェル石はんれい岩中の角閃岩帯である。

この鉱床は、角閃岩の構造にほぼ整合的に胚胎しており、約1.5kmの間に、露頭が点在するものである。露頭ごとに、鉱床が相当附けていて、各露頭はそれぞれ別個の鉱体を形成しているものである。

最南端の露頭は、幅約5cm平均の細長いもので、延長が約25mで品種を確認される地鉱鉱床である。走向は角閃岩の片理と平行したN20°W方向であるが、傾斜は角閃岩のそれが70°NE平均であるのに対して50°NEぐらいの傾斜をしめしている。鉱床礦物は、磁鉄鉱、磁硫鉄鉱、黄鉄鉱、および黄銅鉱で、部分的に多量の黄銅鉱が濃集しているところが
ある。母岩の変質は、それでもいちじるしいものではないが、石英、斜長石、各種の角閃石、透輝石、緑泥石、緑泥石などが不規則に組合わさって生成されている。とくに、石英はブール状あるいは脈状となって多量にみられる。

塊鉱鉱体の約 160 m ほど北方には、本流を横断する露頭がみられる。それは、幅約 4 m の剪断帯の中に黄鉄鉱が鉱染したガリ鉱だけならかり、塊鉱はみられない。ビリ脈状に、磁鉱鉱や黄銅鉱が形成されている場合がある。ここでは、石英と緑泥岩が多い。

そこから約 500 m ほど北方の支流に、幅約 30 cm ぐらいで、12 m ほど延長が確認できる露頭がある。それは、大型の黄鉄鉱が鉱染したガリ鉱からなるもので、少量の磁鉱鉱、磁硫鉱鉱、黄銅鉱がともなわれている。

以上の露頭のほか、硫化鉱鉱が鉱染したところや、磁鉱鉱だけが形成されたところなどがある。これらの露頭相互の関係は、よくわかっていないので、この鉱床が全体としてどのような形態をとって胚胎しているものか不明である。塊鉱は相当高品位のものであり、ガリ鉱も応急行可能な品位を保持している。したがって、今後規模の大きい鉱体が発見されれば、開発も可能となるであろう。

2 クロム鉱鉱床 (Cr)

ピウ岳の東方を、北北西一南東方向に走る蛇紋岩体がある。この岩体は、ジュンペツ川から新冠川本流、さらに北上して、その支流モウリ川にぬれるものである。ジュンペツ川から新冠川本流にかけては、幅数 100 m の小岩体の群集であるが、ピウ岳東方では、それらは一つになって幅はやや広くなり、1 km を越えるようになる。このように、蛇紋岩体が大きくなると、クロム鉱鉱の転石が目立って多くなる。

この蛇紋岩体中で、最もクロム鉱鉱の転石が多いのは、ピウ岳の東出尾根の北および南の地域である。ことに南のアイマベツ沢の地域では、ほとんどの小沢にも、クロム鉱鉱の転石がみとめられ、所によっては、直径 50 cm から 1 m に達する大きな鉱塊が群集して沢の中にみられることがある。鉱床の露頭も、労力所に発見されている。しかし、転石群体中には多くの剪断帯が発達し、蛇紋岩は片状化と粘土化がいちじるしい。したがって、クロム鉱鉱鉱床も変位変形がいちじるしく、初生形態をほとんど失ってレンズ状を呈して胚胎し、きわめて探査が困難である。

<table>
<thead>
<tr>
<th>Cr₂O₃</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>SiO₂</th>
<th>CaO</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.27</td>
<td>15.60</td>
<td>12.01</td>
<td>0.60</td>
<td>0.96</td>
<td>15.77</td>
</tr>
</tbody>
</table>

分析者 北海道立地下資源調査所 技師 佐藤 蕾
現在まで、有望な鉱体が発見されていないが、転石鉱体が小さいことから考えても、大きな期待を持つことはできない。な
お、参考までに、この地域で採取された流鉱の位品をしめせば、次のように Cr₂O₃ は 50% を越える高品位鉱である。

3 石灰石鉱床（Ls）

イドンナップ層の上部とみられる層準には、多くのレンズ状石灰石鉱体が賦存している。しかし、そのほとんどものは、幅 10 m 内外の小さな岩体で、そのもつとも大きいものでも 30 m の厚さの岩体にすぎない。この図幅調査のときに、新冠川本流で大規模の石灰石の岩体を発見したが、その大部分は幌尻岳図幅地域内にふくまれており、この地域にはその延長部とみられるその一部が露出しているだけである。したがって、この図幅地域内の石灰石鉱床は、採掘の対象となるものではない。

4 鉱化帯（Me）

この図幅地域の基盤岩類の中には、各所に鉱化帯が発達している。このうち、とくにその発達がいちじるしいのは、神居古瀬構造帯の蛇紋岩体の東側に発達しているものである。岩清水附近にみられるものは、幅約 50～100 m ほどで、延長約 1 km ていどである。また北部のモウレルカッシュベ沢の蛇紋岩体の東側にも、同じ様な鉱化帯が幅約 100 m、延長約 2,000 m ほどにわたって発達している。この鉱化帯は、いちじるしく粘土化されており、その中に多量の黄鉄鉱が鉱染している。一部には、珪化帯が発達している。そして、部分的にはあるが、黄鉄鉱の塊状がみとめられる。

参考文献

1) 舟橋三男、橋本誠二（1951）： 日高帯の地質 地図研専報
2) 橋本 亘（1953）： 5 万分の 1 地質図幅「山部」
3) 鈴木醇（1954）： 北海道産枕状熔岩（Pillow lavas）に就いて 北地要第 26 号
4) 鈴木醇（1955）： 蝶結岩（Diabase）に関する諸問題 北地要第 30 号
5) 橋本 亘（1955）： 5 万分の 1 地質図幅「下富良野」
6) 橋本誠二（1955）： 北部日高山脈の氷蝕地形 地質雑 Vol. 716. P 209～217
7) 橋本誠二（1955）： 日高帯幌尻岳附近のはんれい角閃岩類について （日高帯基性深成岩類の地質学的研究、第3号）北地要第28号 1-10
8) 鈴木 守、酒勾純俊、松井公平（1957）： 北海道費良野町西方山地のホルンフェルス 岩鋳第 43 巻第 1 号
10) 舟橋三男（1958）： 神居古瀬構造帯 鈴木醇教授還暦記念論文集 37—52
11) 橋本誠二（1958）： 日高変成帯 鈴木醇教授還暦記念論文集 17—36
12）山田 忍（1958）：火山噴出物の状態からみた冲積世における北海道の火山活動に関する研究 地団研専報 No.8
13）長谷川潔，酒勾純俊（1958）：5万分の1地質図幅「神威岳」
14）中島秀雄，鈴木 守，平井喜男（1958）：日高山脈西方時代未詳層群の化石新産地 北地要第36号 1−5
15）吉田 尚，松野久也，佐藤博之，山口昇一（1959）：5万分の1地質図幅「比宇」
16）鈴木 守，橋本誠二，浅井 宏，松下勝秀（1959）：5万分の1地質図幅「楽古岳」
17）小山内照，松下勝秀（1959）：日高山脈西縁の白亜系—Ⅰ 北地報告第21号 17−28
18）小山内照，松下勝秀（1959）：日高山脈西縁の白亜系—Ⅱ 北地報告24号 19−37
19）鈴木 守（1960）：岩清水発電所の蛇紋岩塚道について 第24号 38−44
20）小山内照（1960）：5万分の1地質図幅「共和」
21）橋本誠二，鈴木 守，小山内照（1961）：5万分の1地質図幅「幌尻岳」
22）小山内照，松下勝秀（1961）：日高山脈西縁の白亜系—Ⅲ 北地報告第25号
23）長谷川潔，小山内照，鈴木 守，松下勝秀（1961）：北海道中軸地帯の先エゾ層群—地層区分の提案 北地報告第25号
24）Masayuki Saitō（1961）：Chromite deposits associated with ultra-basic rocks of the Kamuikotan Tectonic Zone—especially on the mechanism of genesis 北地報告第25号
25）酒勾純俊（1961）：コイボクシュシビチャリ川の含銅硫化鉱床 北地質料65号
26）鈴木守也：5万分の1「美瑛図幅」未発表
PL 1 含ラジオラリヤ珪質輝緑凝灰岩
(Radiolarian bearing siliceous schalstein)
[新冠川中流]

PL 2 硅質硬砂岩—アイドンナップ層
(Siliceous wacke) [新冠川上流]
PL 3 輝緑凝灰岩
(Common schalstein) [新冠川中流]

PL 4 角礫質輝緑凝灰岩
(Breccia bearing schalstein) [新冠川中流]
PL 5 方解石中の針状ガルコフマネ集合部

(Needle glaucophane aggregate in calcite) [新冠川]

PL 6 緑色片岩－ミロナイト質岩相

(Green schist—Mylonitic facies) [シュンベツ川]
PL 7 セプタ (Septa)
Ho: (褐色角閃石) Q: (石英)

PL 8 杏仁状構造をしめす正規型スピライト
(Normal type spilite containing amygdules) (新冠川中流)
PL 9 斜長石斑晶をふくむ正規型スピライト
(Plagioclase phenocrysts bearing normal type spilite) [新冠川中流]

PL 10 杏仁状構造をしめす正規型スピライト
(Normal type spilite containing amygdules) [新冠川中流]
PL 11 正規型スピライト
(Normal type spilite)

PL 12 正規型スピライト (柱状節理をしめす)
Normal type spilite (Indicating Columina joint)
PL 13 チタン質単斜輝石の発達しているスピライト
(Spilite developing titaniferous monoclinic pyroxenes)
[新冠川中流]

PL 14 中粒輝緑岩
(Medium grained diabase) [シュンベッ川上流]
PL 15 細粒輝緑岩
(Fine grained diabase) [パンペツの沢]

PL 16 緑色角閃片狀角閃岩
(Green hornblende schistose amphibolite)
[ジョンベツ川上流]
PL 17 ソシュール石はんれい岩中のかなり火成岩構造をとどめている岩相
(The rock facies holding igneous texture in saussurite gabbro)
Ho: 褐色角閃石 (brown hornblende) [シュンペッ川上流]

PL 18 かんらん石はんれい岩 (Olivine gabbro)
Ol: かんらん石 (olivine) Py: 普通輝石 (augite) [シカシナイ山]
PL 19 ソシュール石はんれい岩（交代相）
(Metasomatic facies of saussurite gabbro)
Pl: 斜長石（plagioclase） Ho: 緑色角閃石（greenhornblende）
[ジュンペツ川上流]

PL 20 褐色角閃石角閃岩（Brown hornblende amphibolite）
Ho: 褐色角閃石（brown hornblende）[ジュンペツ川]
PL 21 粗粒輝緑岩
（Coarse diabase）[新冠川]

PL 22 トロニエム玢岩（Trondhjem-porphyrite）
[新冠川]
EXPLANATORY TEXT
OF THE
GEOLOGICAL MAP OF JAPAN
(Scale, 1 : 50,000)

IDONNAPPUDAKE
(Kushiro—56)

By
Mamoru Suzuki
Hiroshi Osanai
Kohei Matsui
Jun Watanabe
(Geological Survey of Hokkaidō)

Résumé

The sheet-map "Idonnappudake" covers the area on the western side of the Hidaka mountain range forming a quadrangle between longitude to 142°30' to 142°45' E and latitude 42°30' to 42°40' N.

In this area included in the axial tectonic zone of Hokkaidō, there are two prominent tectonic zones. The one is the Hidaka tectonic zone and the other the Kamuikotan. The former is moreover divided into three tectonic, units, namely from west to east the Hidaka western tectonic zone, the Hidaka front folded zone and the Hidaka axial metamorphic zone. Between the Kamikotan and the Hidaka tectonic zones, Cretaceous series are situated in a narrow belt. Each of these units respectively presents conspicuous parallel zonal arrangement.

Sedimentary rocks

The sedimentary rocks of the area are made up of Pre-Cretaceous, Cretaceous, Neogene Tertiary and Quaternary deposits.

The Pre-Cretaceous series is divided into two formations, which
<table>
<thead>
<tr>
<th>Geological age</th>
<th>Stratigraphical sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary</td>
<td>Gracial Deposits</td>
</tr>
<tr>
<td></td>
<td>Deluvium</td>
</tr>
<tr>
<td></td>
<td>Terrace deposits</td>
</tr>
<tr>
<td>Neogene</td>
<td>Kashikoshioumanaigawa formation</td>
</tr>
<tr>
<td>Tertiary</td>
<td>Niikappugawa formation</td>
</tr>
<tr>
<td></td>
<td>Nukabiragawa formation</td>
</tr>
<tr>
<td>Cretaceous</td>
<td>Middle Ezo Group</td>
</tr>
<tr>
<td></td>
<td>Niikappugawa formation</td>
</tr>
<tr>
<td></td>
<td>Nukabiragawa formation</td>
</tr>
<tr>
<td></td>
<td>Lower Ezo Group</td>
</tr>
<tr>
<td></td>
<td>Sōsyubetsugawa formation</td>
</tr>
<tr>
<td>Jurassic-Triassic</td>
<td>Hidaka Super-group</td>
</tr>
<tr>
<td></td>
<td>Iwashimizu formation</td>
</tr>
<tr>
<td></td>
<td>The lowest formation of Sorachi group</td>
</tr>
<tr>
<td></td>
<td>Idonnappu formation</td>
</tr>
<tr>
<td></td>
<td>(The upper-mort formation of Kamui group)</td>
</tr>
</tbody>
</table>

are constructed of the Idonnappu formation in the lower part and of the Iwashimizu formation in the upper. The former may presumably be correlated to the upper formation, the Shorōkanbetsu, of the Kamui group, which hitherto has been called the upper Hidaka group and the latter to the lower member, the Ashibetsudake schalstein, of the Yamabe formation of the Sorachi group.

The Idonnappu formation is composed chiefly of radiolarian cherts, slates and sandstones, in addition to which there are small amounts of thin layers of schaltsteins and limestones. The Iwashimizu formation lies conformably on the Idonnappu. It consists of predominant volcanic breccias and tuffs, so-called schalstein, and small amounts of cherts, slates and sandstones. Besides, many pillow lavas exist among the beds of these formations. Owing to structural disturbances and deficiency
of the key bed the details of the stratigraphic sequence and geologic structure of these formations are still not perfectly clear. Though fossils occur rarely in them, they seem to correspond from Triassic to Jurassic judging from previously published reports.

The Cretaceous series are divided into two groups, the lower and the middle Yezo. The Sōshubetse formation is the only one of the lower Yezo group on the mapped area. It consists of black shales and grey or fine dark grey sandstones. In this area the Middle Yezo group is represented by two formations of which the lower is called the Nukabiragawa formation and the upper the Niikappugawa. The former covers the preceding formations unconformably, and consists of sandstone containing small amounts of shales and white tuffs. Conglomerate is located in the lowest part of the formation. The Niikappugawa formation lies conformably on the Nukabiragawa. Shale is the chief constituent member in the formation, but more or less tufaceous sandstones are intercalated.

The Neogene Tertiary of the area is constructed only of the Kashikoshioumanaizawa formation which lies unconformably on the Idonnappu formation. At the lowest part of this formation conglomerates lie and from the lower to the upper a large part of it consists of shale in which many calcareous nodules are contained. Thin beds of sandstones are intercalated.

Quaternary deposits of the area are beds of gravel and of sand which can be observed as terrace deposits along the river sides. Other morainic deposits are distributed on the north-east side of Namewakkadake.

Metamorphic rocks

The metamorphic rocks found in the area can be classified into two types. The one is exposed in the axial core of the Hidaka metamorphic zone, showing green schist and septa rock. The other is distributed in the western area of axial core; it consists of hornfels, semi-schist and glaucophane-bearing rock.

Green schist forms the western belt of the axial core. The rock consists of granular quartz, plagioclase and actinolitic amphibole. It is a fine-grained mylonitic rock and remarkably sohistose. The boundary
between the western edge of the rock and the Idonnappu formation is bounded by a large scaled overthrust.

Septa rock is found in narrow bands, of about 10~20 m width, between basic intrusive bodies. It shows schistose hornfelsic, biotite gneissic ro prophyroid-like facies.

Hornfels is found in a restricted part of the western out side along the axial core. It is low-grade metamorphic rock and retains original sand grains.

Semi-schist consists of black phyllite or green schistic rock. This rock is situated in shearing zones, especially in the eastern side of intrusive zones of serpentinites.

Glaucophane-bearing rock has been observed only in intrusive belts of serpentinites in the Kamuikotan zone up until the present. This rock is divided into siliceous facies, which the one seems to be of radiolarian chert origin, and the other has an assemblage with garnet, calcite and granular quartz.

Igneous rocks

Igneous rocks in this mapped area are divided into two groups. The one forms the axial core of the Hidaka metamorphic zone and the other is found in the Kamuikotan tectonic, the Hidaka western folded and the Hidaka front tectonic zone. There are various kinds of igneous rocks.

It seems that spilitic rocks are effusives or intrusives of the latter stage of the Hidaka geosynclinal deposits. The rocks are characterized by the presence of albitic plagioclases which show generally bended behavior.

The rocks are distinguished as follows into various rock facies.

\[
\begin{align*}
\text{Normal type spilites} \\
\text{Fine and medium grained diabases} \\
\text{Meta-diabase}
\end{align*}
\]

The normal type spilites are found in the Iwaahimizu formation and the upper part of the Idonnappu formation. A large part of the spilites of this type are found in the form of pillow lavas, but more or less of lava beds.

The significant features of the rocks can be stated as follows;
1) They have a tinge of dark reddish brown; 2) They are generally an aphanitic rock containing many amygdules; 3) They are composed of plagioclase (0.03~0.05 X 0.4~0.6 mm), pyroxene and chlorite. The pyroxenes are a titaniferous augite characterized by light violet color, but in general are few owing to having been replaced by ore minerals, haematite and ilmenite; 4) They show generally hialo-ophitic texture, but a few textures different from the characteristic one of this type are recognized. These are pilotaxitic, hialopilitic and sub-ophitic.

The fine and medium grained diabases are found almost entirely in the Hidaka western tectonic zone, with a few in the Idonnappu formation. They seem to form intrusive bodies at several places, but the details of their occurrences are not yet clear. The diabases of this type are fine to medium grained, and are characterized by deep green color, and by the presence of somewhat bended albitic plagioclase (0.05 X 0.5~0.9 mm). The rocks show ophitic or sub-ophitic texture. The meta-diabase is found in the Idonnappu formation. It is presumably an intrusive rock, but its character is not clear. It is substantially altered by the occurrence of various micro-crystals of needle-like actinolite and other minerals.

The other igneous rocks of the Kamuikotan tectonic zone and the Hidaka western folded zone consists of coarse diabases, saussurite gabbro, serpentinite, microdiorite and trondhjemite.

The coarse diabases are found in sheet or dyke form. The rocks consist of very coarse-grained plagioclase and monoclinic pyroxene, which show ophitic texture. The olivine diabase of which the olivine is altered by chlorite or bowlingite, is known in the other hand specimens. The saussurite gabbro is a little different from that of the Hidaka metamorphic zone. This rock is only found in serpentinite intrusive zones and in general it seems to be an older intrusive one than the serpentinite but the detail of its occurrence is not clear. The rock is made up of large crystals of saussuritized plagioclase, monoclinic pyroxene and actinolitic hornblende, and furthermore these minerals are substantially altered by prehnite, chlorite and others. The serpentinites are the most important igneous rock in the area
excepting the axial metamorphic zone. This sort of rock forms various large and small rock bodies that intrude into sheared zones. The serpentinites in this area show largely foliated habit as the result of late shearing movements of the Hidaka orogenesis. In the serpentinite found in the northern part of the Kamuikotan tectonic zone there are chromite ore deposits.

Many small bodies of microdiorite and trondhjemite are found as cross-cut dykes through the serpentinites or slates.

There are various basic igneous rocks in the axial core of the Hidaka metamorphic zone. All the rocks show schistic or foliated habit and mutually parallel arrangement. From west to east they are divided into three rock facies, namely they are green hornblende schistose amphibolite, saussurite gabbro and brown hornblende amphibolite. Between each of these rocks there are boundary sheared zone or septa.

The green hornblende schistose amphibolite is a dark greenish remarkable schistose. In general aspect it is characterized by development of ptigmatic veins of quartz-plagioclase. It consists of deep green hornblende, plagioclase (An=25~38%), and a little quartz while the other constituents comprise of epidote, sphene and ilmenite. Hornblende is the most prominent mineral occupying 60~80% by volume; it shows nematoblastic assemblage.

The saussurite gabbro is characterized by the presence of saussuritized plagioclases tinged with pale violet to the naked eye. As the rock has been subjected to metamorphism a large part of the rock body is intensely amphibolitized. This amphibolitized facies retains character like to the above mentioned schistose amphibolite. But the massive part which has remained free from amphibolitization shows clear gabbroic texture. Many idiomorphic plagioclases are found in this part; besides, granular monoclinic pyroxenes showing irregular form as relic mineral have remained in large uralitic hornblendes.

The brown hornblende amphibolite is assumed to the earliest intrusion of diabases of the metamorphic zone. The rock shows clear granoblastic texture consisting of brown hornblende, plagioclase (An=22~35%) and a little biotite or quartz.

— 64 —
EXPLANATORY TEXT

OF THE

GEOLOGICAL MAPV OF JAPAN

SCALE 1 : 50,000

IDONNAPPUDAKE

(KUSIRO—56)

BY

MAMORU SUZUKI
HIROSHI OSANAI
KÔHEI MATSUI
JUN WATANABE

GEOLOGICAL SURVEY OF HOKKAIDO
JIN SAITÔ, DIRECTOR

HOKKAIDO DEVELOPMENT AGENCY
1961