報 文

今金地域のマンガン鉱床
Manganese deposits of the Imagane District, Hokkaidō.

土 居 繁 雄
Shigeo Doi

Abstract

Many manganese deposits of the so-called Pirika type are developed at the Imagane district, which includes the green tuff area of the south-western Hokkaidō.

In stratigraphically, these deposits can be divided into two type from the position of occurrence: (a) deposits found on the Palaeozoic complex; (b) deposits developed in the sediments of Miocene in age.

The modes of occurrence of many manganese deposits are controlled by geological structure: the deposits are distributed at special portions with high dip. These phenomena are applicable for the prospecting of the so-called Pirika type manganese deposits.

In this paper, the results of geological researches on these deposits are summaried.

まえがき

この地域は、北海道におけるマンガン鉱床地帯として、一つの持ちょうをもつた地域である。そこにみられるマンガン鉱床は、調査層群と八雲層群とのあいだや、調査層群の上部層の中に残存する、いわゆるピリカ型のマンガン鉱床である。

明治のはじめから開発された古い歴史をもつ地域で、とくに、昭和20年頃までは、盛大に採掘されていた。なかでもメップ、美利河の両鉱山は、重要鉱山にもかぎられ、品位が高く、優良な鉱石を産することで、広く知られていた。しかし、最近では、全く衰微し、美利河鉱山が余命をつないんでいるほかは、休止状態にある。これは、すでに上部の鉱体が、ほとんど掘りつくされたためである。

したがって、この地域のマンガン鉱山の、今後の発展は、下部鉱体の確認と、新しい鉱床の発見にかけられている。

このためには、鉱床生成の環境や鉱床の形成が、地質構造と、どのような関連があるのかを明らかにすることが必要であろうと考えられる。

このような次第で、筆者は、ピリカ型マンガン鉱床の探鉱という立場から、現在まですすめてきた、調査結果の考えを述べるとともに、各鉱山の概況をつけ加えて、報告することとした。
報告に当っては、北海道立地下資源調査所地質調査課長兼藤昌之氏から、有益な助言をいただいた。マンガン鉱石の鑑定は、北海道大学理学部地質観光学教室谷谷育氏の労をわざわざいたした。また、現地においては、今金町長安部義雄、町町職員各位、美利河鉱山所在地長岡部宏、同鉱山長嶋賢治、太黒鉱山松浦勝彦の諸氏からいろいろ御協力を賜わった。

これらの方々に厚くお礼を申し上げる。

1 位置および交通

今金町は、松林支庁管内の北端で、後志国観音部の東部に位置している。東は、福徳峰とルコツ岳（標高531.8 m）をむすぶ尾根を境として、長万部町に、南は八雲町と大楠村に、西は北見町にそれぞれ接しており、北は、長万部岳（標高974.2 m）・カニカン岳（標高980.7 m）・メップ岳（標高1,147.2 m）をつらねる山地の尾根を境に、島牧郡と接している。

この地域のもとでも大きな村落は、今金町市街地で、今金町役場をはじめ、営林署・保健所・警察署などの官公署がある。このほか、利別川にそって、東から美利河・花立・樫川などの小さな村落がある。

国鉄線網は、福徳峰から利別川にそって、まえにはノヒの為、小さな村落をめぐって、今金町市街地をとり、日本海岸にある観音部まで通じている。

道路は、太平洋岸にある箂内から、稲穂観音のうえをとり、ほぼ観音部線にそって、観音部まで通ずる国道がある。また、今金町から南の日通をとり、セイヨウベニツ川にめぐり、八雲町に通ずる国道があるほか、合川川にそって、町道が続くされており、農産物の集荷や村産物の搬出に利用されている。

つきに、この地域のマンガン鉱山と、その所在地および交通状況の概略を、一覧表として示しておく。
第1表 マンガン鉱山の所在地および交通

<table>
<thead>
<tr>
<th>鉱山名</th>
<th>所在地</th>
<th>中心市街</th>
<th>交通概略</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>セイヨベツ鉱山</td>
<td>八雲町字セイヨベツ</td>
<td>今金</td>
<td>今金駅から22km, 八雲駅から32kmトラック通ずる</td>
<td>休山</td>
</tr>
<tr>
<td>メップ鉱山</td>
<td>今金町字種川</td>
<td>種川</td>
<td>種川駅から10kmトラック通ずる</td>
<td>休山</td>
</tr>
<tr>
<td>宝島鉱山</td>
<td>今金町字シブナイ</td>
<td>花石</td>
<td>花石駅から12km</td>
<td>夏期採鉱冬期休山</td>
</tr>
<tr>
<td>花石鉱山（仮称）</td>
<td>今金町字シブナイ</td>
<td>花石</td>
<td>花石駅から10km</td>
<td>採鉱中</td>
</tr>
<tr>
<td>太黒鉱山</td>
<td>今金町字美利河</td>
<td>美利河</td>
<td>美利河駅から1km</td>
<td>採鉱中</td>
</tr>
<tr>
<td>稲穂鉱山</td>
<td>今金町字美利河</td>
<td>美利河</td>
<td>美利河駅から1km</td>
<td>採鉱中</td>
</tr>
<tr>
<td>美利河鉱山</td>
<td>今金町字美利河</td>
<td>美利河</td>
<td>美利河駅から2km</td>
<td>採鉱中</td>
</tr>
<tr>
<td>美利河鉱山</td>
<td>今金町字美利河</td>
<td>美利河</td>
<td>美利河駅から2km</td>
<td>採鉱中</td>
</tr>
</tbody>
</table>

2 地質概説

今金町東北地域の地質は、下位から先第三紀の基盤岩類・新第三紀層と同時期の火山岩類および第四紀層から構成されている。

基盤岩類は、いわゆる古生層と、それを貫く花崗岩質漂成岩を主体とし、中部地域と北部地域に広く発達しており、新第三紀にはじまった緑色凝灰岩の堆積盆地の基盤をつくっている。

古生層は、この地域の北部地域にだけ分布しており、花崗岩質に貫かれている。そして、その一部は変成岩にかわっている。この地層は、黒色の粘板岩を主体とし、砂岩・粘岩をまじえている。層厚から変成作用をうけて、その一層らしいところは、アルクフェルス・黒雲母片岩または片麻状粘岩となっている。

また、粘板岩と粘岩の互層部には、ところどころに大小の石灰岩塊を、レンズ状に含んでいる。再結晶作用をうけて、大理岩になっているところもある。

この地層は、花崗岩類の進入や、造構運動によって、構造が複雑になっているので、その詳細は明らかではない。しかし、美利河町に近い地域の地層は、N-S・60°～80°W、種川の北部地域に分布しているものは、E-W・70°～80°Sの走向・倾角をそれぞれしきめている。両地域の構造はつきりとつかっている。

花崗岩は、北イサギク川よりニセイベツ川上流部をへて、利別川の下流、チェンベツ川中流部にかけて、広く分布している。このほか、上ハカイマップ川中流部や、美利河町の南にある山田山（標高400m）にも、露出している。中粒から粗粒の完晶質な、黒雲母花崗岩である。

花崗隠岩は、下ハカイマップ川の中・上流地域に、古生層を貫いて分布しているほか、下ハカイマップ川下流のメップ鉱山附近から、西方のメップ川中流地域にかけて、発達している。中粒ないし粗粒の完晶質な岩石である。

この地域に発達している新第三紀層は、下位から調査層群・八雲層群・黒松内層群および御嶽層群にわけられる。

調査層群は、第2図に示したように、地域によって、いちじるしく岩相のちがいがある。
美利河地域では、第2図のように、岩相によって6層に細分される。アルゴーズ砂岩・礫岩層をのぞく、各地層層は東部連山によって発達しており、西方にむかって、層厚は薄くなり、粗粒な砾屑物が多くふくむ。利別川の茶屋川附近やニセイツ川下流地域では、下部の石英粗面岩層帯砂岩層、砂岩・泥岩の互層を欠き、アルゴーズ砂岩礫岩層が、花崗岩や片岩層のうえに、不整合にのせられている。さらに、利別川の支流附近では、アルゴーズ砂岩礫岩層、泥岩層を欠き、緑色凝灰質砂岩層が、花崗岩のうえに不整合にのせている。このように、層理層群は、基盤岩類にたいして、東から西へ、つきつきと上の層準の地層が接している。

花石地域では、第2図にしめてあるように、下位からアルゴーズ砂岩・礫岩の互層、玄武岩質凝灰岩と同質の集塊岩層、礫岩層、緑色凝灰岩層、石英粗面岩および角礫凝灰岩層などから構成されている。

八雲層群は、美利河樺山附近から、ほぼ利別川にそって、花石・中里に至る地域に分布している。このほか、上ハサイマッパ川流域、下ハサイマッパ川中流域とも、発達している。花石から美利河樺山新山の西方、上ハサイマッパ川および下ハサイマッパ川流域では、下位の層理層群を欠いて、直接、基盤岩の古生層や花崗岩のうえに、不整合にのせている。このように、層理層群の堆積のようすと全く同じで、八雲層群を堆積した海が、層理層の海より、さらに西方に拡がっていったことを、明らかにしめしている。

美利河、花石、中里の各地域ではN10°E・5°～10°W、上ハサイマッパ川流域の北方ではN5°～40°E・15°～30°NW、同地域の南方ではN15°～30°W・5°～30°SE、下ハサイマッパ川流域ではN60°E～N50°W・5°～20°SE～SWの方向・傾斜を、それぞれとっている。
この地域の下部は、砂質泥岩。上部は硬質頁岩を主とし、最上部は礫質頁岩層が卓越している。
黑松内層群は、まえにのべた、八雲層群の上位に、漸移関係でのついている。
地域の南方では、おもに泥岩・凝灰質砂岩などからなり、わずかに角礫凝灰岩や集塊岩の薄層をともなっている。
しかし、この岩層を、北方に追跡すると、安山岩質集塊岩や凝灰岩層となっててしまう。
このように、この地域は、水平な層相の変化がいちじるしい。
なお、どこでものばす東西方向の走向をもと、5°～15° 内外の緩い角度で、南に傾斜している。
瀬棚層群は、美利河・花石附近の利別川にそって、南北に細長く分布している。この地域では、ほぼ南北の走向の軸をもつ、向斜構造をとり、傾斜は一般に 5° 内外である。ただ、利別川にそって発達している花石断層の近くでは、直立に近い傾斜をしめしている。
下位層との関係は、下ハカイマップ川下流地域では、黒松内層群のうえにのっているが、直接の関係は不明である。また、美利河・花石地域では、黒松内層群・八雲層群・頭峰層群のうえに、それぞれ傾斜不整合の関係でのっている。
この地層は、下部は古期岩類の礫を多くふくむ礫岩層、凝灰質粗粒砂岩からなり、上部は、不規則な礫理の発達する、細粒から中粒の凝灰岩と泥岩の互層から構成されている。
第四紀層は、段丘形成をつくると、段階に明らかにわかれて、広く分布している洪積層と、利別川沿岸に発達する沖積層とである。

3 鉱床

この地域に賦存しているマンガン鉱床は、いわゆるリリカ型鉱床とよばれる。沈澱鉱床で、現在、観察される賦存の位置および形態は、鉱床によってかじるいも、従来、リリカ型マンガン鉱床は、単に層状鉱床とされてきたが、新第三紀中新世の緑色凝灰岩をもたらした、きわめて旺盛な火山活動の果てに、海底に沈澱した鉱層であり、その初生形態は、第三紀後半におこなわれた造構運動によって、複雑に変位している。
また、これらのマンガン鉱層の賦存形態を、地質構造を照し合わせながら詳細にみてゆくと、鉱床の初生形態は、沈澱した当時の海底地形と密接な関係のあることが、明らかである。

3.1 鉱床賦存の層位学的配置および形態
この地域に賦存しているマンガン鉱床を、層位学的にみると、基盤岩である花岡岩のうえに沈澱したものと、新第三紀層の中に賦存しているものの、2 つの型が観察される。

3.1.1 基盤岩上のマンガン鉱層
基盤岩である花岡岩のうえに、花岡岩の巨礫をふくむ薄い凝灰質礫岩層を下盤として、その上にマンガン鉱層が賦存している。この鉱層は、八雲層群の砂質泥岩または黒松内層群の凝灰質砂岩・角礫凝灰岩の互層などで、おおわれている。
たとえば、美利河鉱山新山の新栄坑では、第 4 図および第 5 図にしめせてあるように、花岡岩の巨礫をふくむ礫岩層の上に、マンガン鉱床が層状に賦存している。鉱層の厚さは一定したものではなく、花岡岩の巨礫の突出部では薄く、礫層と巨礫の間で厚くなっている。また、鉱層は、全部がマンガン鉱からなっているわけではないのでなく、鉱層のなかに流れ状に凝灰質泥岩のはさみが、しばしば多かくふまれている。（第 4 図参照）

3.1.2 新第三紀層の中に賦存するマンガン鉱層
新第三紀層の中に賦存するマンガン鉱層は、頭峰層群の中にあるものと、頭峰層群と八雲層群との境にあるものとの、2 つにわけられる。

第 4 図 基盤岩上のマンガン鉱層のスケッチ
（美利河鉱山新山新栄坑）
D：泥岩のはさみを含む凝灰質砂岩
B：褐色の褐鉄鉱化した礫質物
M：マンガン鉱層（T：凝灰質泥岩を墨流状にふくむ）
T：凝灰質泥岩
G：花岡岩礫
第5図 美利河鉱山新山の鉱床立体図（基盤岩上の鉱床例）

第6図 美利河鉱山新山新業坑の鉱床断面図
基盤の等高線は新業坑地とみなす。

凝灰質砂岩・角礫凝灰岩
泥岩 硬質頁岩
満巻鉱床
砂岩（花崗岩の巨礫を含む）
訓練層群の中の鉱床であるマンガート鉱床は、すでに地質概説のところのべたように、訓練層群の上部に発達している花緑凝灰岩層と、玄武岩質角雑凝灰岩層との間に、成層している。

たとえば、セイタツッポ鉱山では、花緑凝灰岩層と、層状の玄武岩質角雑凝灰岩層との間に、塊状のマンガン鉱床を生む、厚さ 30 cm ～2 m でいくつものあずき色を呈する粘土化のいちじるしい凝灰岩の堆積層が発達している。

ここでは、ところによって、虎石よもと呼ばれる粘質岩が下盤側に発達している場合がある。この虎石の中には、マンガント層は全くみとめられない。

マンガン鉱は、不規則な変状の土地で、あずき色の凝灰岩の地層の中に散在している。ところによっては、30 cm でいくつかの層をもつ、全くマンガント鉱床だけの鉱床が、発達している場合もある。しかし、連続性に乏しい。

訓練層群と八雲層群との間に堆積する鉱床には、訓練層群の上部をしめる玄武岩質角雑凝灰岩層と、八雲層群の下部をしめる泥岩層との間に堆積しているものと、訓練層群の安山岩質凝灰岩層と、八雲層群の下部をしめる泥岩層との間に堆積しているものの、2 つがある。

美利河鉱山、観音島鉱山、太郎山鉱山は前者の型に属し、花石鉱山（仮称）は後者に属する。

美利河鉱山元山の鉱床は、虎石よもと呼ばれる粘質岩とちもわれた層状鉱床である。しかし、必ずしも虎石がともわれているとは限っていない。ただ、虎石の中に堆積する鉱床は、比較的規模が大きい傾向をもっている。

この虎石は、一つの地層として追跡できるほどの拡がりをもつものではなく、断続している。虎石には、黄褐色の緑苔が、一部に堆積している部分、多孔質でかさかさとした感じの見るものです、黒色の微密化をし、地表に突き出た形がつかれたもの、暗緑色のものなどが、密着してみられれているもの、暗緑色のものなどが、密着してみられれているもの、暗緑色のものなどが、密着してみられれているもの、暗緑色のものなどが、密着してみられれているもの、暗緑色のものなどが、密着してみられれているものの、暗緑色のものなどが、密着してみられれているもの、暗緑色のものなどが、密着してみられれているもの、暗緑色のものなどが、密着してみられれているもの、暗緑色のものなどが、密着してみられれているもの、暗緑色のものなどが、密着してみられれているもの、暗緑色のものなどが、密着してみられれているもの、暗緑色のものがあれば、黒色の微密な虎石とマンガント層とは、微密する関係にある。}

マンガント層と虎石との関係は、必ずしも一定していない。たとえば、第 7 図および第 8 図に示したように、虎石のなかにマンガント層が不連続であり、また、虎石のなかにマンガント層が発達している場合もある。
規則の形で入りこんでいる場合、虎石がマンガン鉱床と上盤の泥岩層との間にある場合、虎石がマンガン鉱床と下盤の玄武岩質角礫質凝灰岩層との間にあらある場合などがある。

虎石をともなっている鉱層の下盤と、全くともなっていない鉱層の下盤とは、变質の程度が全く違う。前者は、粘土化作用をうけて、暗緑色の軟質な粘土質角礫質凝灰岩となっている。これに反対して後者は、第9図に示したように、マンガン鉱がゴマ状に鉱染しており、その一部は脈状をとっている場合がある。マンガン鉱がゴマ状
に鉱染している部分は、角礫質凝灰岩の角礫は、灰白色的珪質物に変質している。

また、虎石をともなわない上盤側に発達しているマンガン鉱床には、まえにべた新山新岩層内でみられたように、凝灰質泥岩の小さなはさみが、墨流し状にふくまれている。虎石をともなっていない鉱層は、塊状のマンガ
ン鉱の集合体で、灰白色的珪質物質をともなっている。

花石鉱山（仮称）の鉱床は虎石というよりもむしろ珪質の凝灰岩にともなわれた層状鉱床である。ここでは、必ず、花石の凝灰岩層の中に、鉱層が胚芽している。

この珪質の凝灰岩は、まえにべた虎石と同じように、一つの地層として追跡できる鉱床をもつものではない。マンガン鉱はこの中にきわめて不規則な形で、層状に発達している。ここでは、下盤・上盤の変質はほとんどみられない。マンガン鉱床は、層状の鉱床の集合体である。その最も厚いところで、20cmでいくものであるが、
連続性に乏しい。

3.2 金床と地質構造との関係

従来、ビリカリマンガン鉱床については、形態の分類学的記載にだけ終えて、その賦存形態が、地質構造
と、具体的にどのような関係にあるのか、というようなことは、ほとんど考えられていない。

筆者は、1954年に杉本浄水鉱業株式会社の矢野河鉱山元山の地質鉱床調査をおこない、マンガン鉱床は、特殊な地質構造の所に、賦存していることを明らかにした。

そして、このような資料をもとにして、試験をおこなった結果、新しい鉱床が発見されたのである。
訓練層群の中に貯存するマンガン鉱層は、すでに出没観のところのべたように、訓練層群の上部に発達している緑色褐色炭酸亜鉄層と、玄武岩質角礫凝灰岩層との間に、胚胎している。

たとえば、セイヨペグ鉱床では、緑色褐色炭酸亜鉄・礫岩の互層と玄武岩質角礫凝灰岩層との間に、塊状のマンガ
ン鉱をふくむ、厚さ30cm〜2mというままを呈する粘土化のいちじるしい褐色亜鉄層が発達している。
ここでは、ところによって、虎石とともに凝灰岩が下盤側に発達している場合がある。この虎石の中には、マン

第7図 マンガン鉱層が虎石の中にある状態のスケッチ（美和河鉱山元山出産坑）
1 虎石 2 マンガン鉱層 3 赤褐色岩凝灰質粘土 4 緑色褐色粘土

マンガン鉱層は全くみとめられない。

マンガン鉱は、不規則な層状の塊で、あずき色の凝灰質の地層の中に散在している。ところによっては、30cmでいっぽんの厚さをもつ、全くマンガン鉱石だからなる鉱層が、発達している場合もある。しかし、連続性に乏しい。

訓練層群と八雲層群との間に貯存する鉱石層には、訓練層群の上部をしめている玄武岩質角礫凝灰岩層と、八雲層群の下部をしめる泥岩層との間に胚胎しているものと、訓練層群の上部をしめる泥岩層と、八雲層群の下部をしめる泥岩層との間に胚胎しているもの2つがある。

美和河鉱山元山、畑地鉱山、太髪鉱山は前者の型に属し、花石鉱山（仮称）は後者に属する。

美和河鉱山元山の鉱床は、虎石とよばれる凝灰岩にともなわれた層状鉱床である。しかし、必ずしも虎石とかもわれているとは限っていない。ただ、虎石の中に胚胎する鉱石層は、比較的規模が大きい傾向をもつている。

この虎石は、一つの地層として道をできるだけの拡がりをもつものではなく、断続している。虎石には、黄褐色の緻密なもの、黄褐色で石英脈が粘状に発達し、多孔質でがきがきした感じのするもの、黒色の緻密なもので滴水分がしみこんでいるもの、緑緑色の緻密なものなどがある。このうち、マンガン鉱層が発達しているのは、黄褐色の緻密な虎石跟まで、黒色の緻密な虎石とマンガン鉱層とは、消極的な関係にある。なお、虎石のなかに、赤褐色の粘土層を含んでいる場合が多い。

マンガン鉱層と虎石との関係は、必ずしも一定していない。たとえば、第7図および第8図に示したように、虎石のなかにマンガン鉱層が不
規則的形で入りこんでいる場合、虎石がマンガン鉱層と上部の凝灰岩層との間にある場合、虎石がマンガン鉱層と下盤の玄武岩質角礫凝灰岩層との間にある場合などがある。

虎石をもななつている鉱層の下盤と、全くもななつていない鉱層の下盤とは、変質の度合が全く違う。前者は、粘土化作用をうけて、暗緑色の軟質な粘土質角礫凝灰岩となっている。これに反して後者は、第9図に示したように、マンガン鉱がゴマ状に鉱染しており、その一部は繊状をとつている場合がある。マンガン鉱がゴマ状に鉱染している部分は、角礫凝灰岩の角礫は、灰白色の凝質物を変質している。

また、虎石をもななつていない上盤側に発達しているマンガン鉱層には、まえのべた新山の新床内でみられたように、凝灰質泥岩の小さなはさみが、墨流し状にふくまれている。虎石をもななついない鉱層は、塊状のマンガン鉱の集合体で、灰白色的凝質物質をもななつている。

花石鉱山（仮称）の鉱床は虎石というよりもむしろ凝質の凝灰岩にとらわれた層状鉱床である。ここでは、必ず、この凝質の凝灰岩層の中に、鉱層が胚芽している。
この凝質の凝灰岩は、まえのべた虎石と同じように、一つの層層としてつづけることができるものではない。マンガン鉱はこの中にきわめて不規則な形で、層状に発達している。ここでは、下盤・上盤の変質はほとんどみられない。マンガン鉱層は、帯状の鉱石の集合体である。その層も厚いところ、20 cm ebonyであるが、透視性に乏しい。

3.2 鉱床と地質構造との関係
従来、ビリ型マンガン鉱床については、形態の分類学的記載にだけついていて、その試存形態が、地質構造と、具体的にどのような関係にあるのか、というようなことは、ほとんどの考えられていなかった。
筆者は、1954年に杉山鉱物調査研究会の実利によって鉱山元山の地質鉱床調査をおこない、マンガン鉱床は、特殊な地質構造の所に、賦存していることを明らかにした。
そして、このような資料をもとにして、試鉱をおこなった結果、新しい鉱床が発見されたのである。

第10図 セイヨベツ鉱山附近地質図
第11図 セイヨベツ鉱山1号坑の鉱床鉱体図
1. 玄武岩質角礫凝灰岩 2. 塊状のマンガン鉱をふくむ粘土化した凝灰岩（あずき色） 3. 虎石 4. 砂岩 5. 凝灰質砂岩

第12図 セイヨベツ鉱山2号坑の鉱床鉱体図
1. 玄武岩質角礫凝灰岩 2. 灰白色凝灰岩 3. 塊状のマンガン鉱を含む粘土化した凝灰岩（あずき色） 4. 虎石 5. 砂岩 6. 凝灰質砂岩
このように、マンガング鉱床は、地質構造と密接な関係をもって宿存しており、しかもその宿存形態は、造礫運動によって、二次的に変位しているが、その変位の度合いは、マンガング鉱床形成当時の海底地形に、それぞれ対応した形をとっていると考えられる。

つきに、各鉱山の場合を例示して、マンガング鉱床が、地質構造とどのような関係にあるかを説明する。

セイヨヘツ鉱山：1号坑では、N5°～45°W・15°～45°NEの走向・傾斜をもつ地質構造をとっている。あずき色を呈する粘土化のいちじるしい凝灰岩は、下盤と上盤との間に、かなり追跡することができ、この中にマンガング鉱がみられるのは、45°前後の傾斜をとっている所である。15°前後の緩傾斜の所には、ほとんどマンガング鉱は存在していない（第11図参照）。

また、2号坑では、N20°～80°E・15°～70°NEの走向・傾斜をもつ地質構造をとっている。ここでも、あずき色を呈する粘土化のいちじるしい凝灰岩は、下盤と上盤との間に、追跡できるが、30°以上の傾斜をもっている所にだけマンガング鉱がある（第12図参照）。

このようなマンガング鉱の宿存と、地質構造との関係は、あずき色を呈する粘土化した凝灰岩の下に発達している虎石についても同じことがみられる。つまり、第11図および第12図に示したように、下盤の急傾斜の所で

第13図 稲穂鉱山近地質図

第14図 稲穂鉱山新坑の鉱床施設図
1 角礫凝灰岩 2 マンガング鉱屑 3 虎石 4 泥岩 5 硬質頁岩

* 土屋篤雄： 美利河鉱山調査報告 北海道後志国今金町東北部地域地質鉱床調査報告書 1954年
第15図 美利河鉱山元山附近地質図

第16図 美利河鉱元山滑栄坑および鶴坑における鉱床礫存図
1 硬質頁岩 2 泥岩（下部は砂質） 3 虎石（マンガン鉱層をともなら） 4 玄武岩質角礫凝灰岩
その厚さは増大する。

硫黄鉱：この鉱山の新坑では、N70°E〜E・W・65°〜85°Nの走向・傾斜をもつ直立した地質構造をとっている。この地質構造の中で、虎石は、ほぼ70°以上の傾斜をもつ所に、レンズ状に発達している。しかもマンガン鉱層は、85°までで、むしろ逆傾斜をとるような虎石の中に賦存している（第13図および第14図参照）。

美利河鉱山元山：鶴坑地なるでは、N80°W〜E85°E・20°〜45°Sの走向・傾斜をもつ、地質構造をとっている。マンガン鉱層は、0.7m〜2.0mの厚さで、賦存している。この鉱層を追跡して、処理坑の切替坑道地なみまでした所では、N65°〜75°W・10°〜30°SEの走向・傾斜をもつ緩い傾斜の地質構造をとっている。この10°〜20°の緩傾斜をしめしているところには、わずかにマンガン鉱が下盤側に鉱染状に沈澱しているにすぎない。それでも、30°前後の比較的急な傾斜をとっているところでは、15cmといいの薄いマンガン鉱層が賦存している。

処理坑では、N10°E〜N20°W・30°〜60°Wの走向・傾斜をもつ地質構造をとっている。このような構造の30°前後の傾斜の所では、下盤側にゴマ状にマンガン鉱が鉱染しているいどで、マンガン鉱層はあても10cm〜20cmctでいいうの薄いものである。しかし、40°〜60°の傾斜をもつ所になると虎石の発達がみられることとなり、マンガン鉱層がともなわれている（第15図および第16図参照）。

また、処理坑切替坑道の切羽附近では、N5°W〜N80°W・30°〜50°Sの走向・傾斜をもつ、半ドーム状構造をとっている。ここでは、虎石がもっとも厚くなっている。マンガン鉱層もよく発達している（第17図参照）。

処理坑では、N30°W〜N20°E・10°〜40°Wの地質構造をとっている。10°〜20°の傾斜をもつ所では、下盤側にも全くマンガン鉱の鉱染さえもみられない。しかし、30°〜40°の傾斜をとる所では、ごく薄いマンガン鉱層をともなう。虎石が発達している（第5図および第6図参照）。

以上のべたように、地質構造は、それぞれの地域によって一定していない。しかし、マンガン鉱層や、マンガン鉱層をともなう虎石が賦存している所は、明らかに、その周辺の地質構造がしめす地層の傾斜よりも、より急な傾斜をしめす、特殊な場所に多いといえよう。

このような事実は、調査期の中神の後火山活動の環境作用によってもたらされた。マンガン鉱層の沈殿が、地形的にみて、海底の深かった所に、おそらく物語を物語っているものである。

こうして形成されたマンガン鉱層は、第三紀後半におこなわれた地質運動によって、二次的に変位し、現在みられるような形態をとるようになった。

4 鉱 石

この地域の各鉱山から産するマンガン鉱石は、黑色または褐黒色を呈する、土状または塊状のものである。纖維状構造がひじょうによく発達している。とに、塊状のものは、中心から放射状に繊維状の結晶が、数帯同心的に重なり合って、帯状に排列している。なお、塊状のものは、方格・錐状・角状・球状・卵状・骨片状をとっているものが多い。

虎石のなかにももわれている鉱石は、紡錘で堅硬な物が多く、鉄黑色の光沢をもつている。鮮明な断面は、金属光沢をしめす。

鉱石のX線、示差熱分析による結果は、第2表および第18図に示したとおりである。花石シラシンアイ（花石鉱山）産の鉱石は、Pyrolusiteの持ちような吸熱反応をしめし、酸分解もPyrolusite
第2表 各鉱山産マンガン鉱石のX線解析

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d (Å)</td>
<td>I</td>
<td>d (Å)</td>
<td>I</td>
<td>d (Å)</td>
</tr>
<tr>
<td>7.94</td>
<td>6</td>
<td>9.91</td>
<td>7</td>
<td>7.61</td>
</tr>
<tr>
<td>4.28</td>
<td>8</td>
<td>3.41</td>
<td>51</td>
<td>3.75</td>
</tr>
<tr>
<td>3.36</td>
<td>24</td>
<td>2.64</td>
<td>14</td>
<td>3.35</td>
</tr>
<tr>
<td>3.10</td>
<td>56</td>
<td>2.52</td>
<td>4</td>
<td>3.13</td>
</tr>
<tr>
<td>2.65</td>
<td>4</td>
<td>2.42</td>
<td>22</td>
<td>2.40</td>
</tr>
<tr>
<td>2.41</td>
<td>20</td>
<td>2.27</td>
<td>6</td>
<td>1.62</td>
</tr>
<tr>
<td>2.10</td>
<td>15</td>
<td>2.20</td>
<td>6</td>
<td>1.62</td>
</tr>
<tr>
<td>1.89</td>
<td>4</td>
<td>1.78</td>
<td>7</td>
<td>1.92</td>
</tr>
<tr>
<td>1.62</td>
<td>18</td>
<td>1.70</td>
<td>4</td>
<td>1.82</td>
</tr>
<tr>
<td>1.56</td>
<td>7</td>
<td>1.67</td>
<td>15</td>
<td>1.67</td>
</tr>
<tr>
<td>1.43</td>
<td>5</td>
<td>1.63</td>
<td>2</td>
<td>1.63</td>
</tr>
<tr>
<td>1.30</td>
<td>5</td>
<td>1.50</td>
<td>4</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.32</td>
</tr>
</tbody>
</table>

第18図 マンガン鉱石の示差
熱分析曲線
1. 美利河鉱山産元山産試料
2. セイヨベツ鉱山産試料
3. 美利河鉱山新山産試料
4. 花石鉱山産試料

第2表の結果に合うように、300℃附近の吸熱反応は、附着水によるものであろう。また、ごく少量のδ-MnO₂をふくんでいるようにも考えられる。

美利河鉱山産元山産の鉱石は、X線解析および示差熱分析曲線ともにManganiteの特有をしめし、少量の粘土状の不純物をふくんでいる。

セイヨベツ鉱山および美利河鉱山新山産の鉱石は、マンガン産のもので、その結晶度も変わより、両者とも、ごく少量のPyrolusiteをふくんでいると考えられるが、鉱物組成の主体となるものについては、さらに、検討をすすめる必要がある。X線解析は、前者はRanciéiteやγ-MnO₂型にやや一致するようである。

5 各鉱山の概況

この地域には、北から、美利河鉱山元山・岡鉱山新山・福徳鉱山・太黒鉱山・花石鉱山(仮称)・セイヨベツ鉱山などがある。

つぎに、これらの鉱山の概況について説明する。

5.1 美利河鉱山

鉱　区　後志国採掘登録第4号・第6号・第16号・第37号
所　在　地　瀬棚郡今金町美利河
鉱業権者　杉枔鉱業株式会社　東京都品川区南品川5丁目

国鉄海老営美利河駅で下車し、ここから花石に下る道にそって、約2kmゆくと、鉱山事務所に到達する。

この鉱山は、明治25年に、児野木が砂金を探採する目的で入山して発見した。その年に、館館にあった英国人鉱山のハウル物産会社が買収し、もとで露天掘で、二酸化マンガン鉱を採掘した。最もふかんに採掘されたのは、明治51年からである。当時、この鉱山のマンガン鉱の産出は、年間10,000tonに達したという。そのごく、現在まで休山することなく、採掘されてきたが、鉱業権は多くの人々の間を移した。大正12年に杉枔鉱業株式会社が創設されるとよんで、鉱業権は同社に取得され、いままで続いている。
操作約 65 年という古い歴史をもつ鉱山なので、すでに上部の鉱床部は、ほとんど採掘されつくしており、いまでは、ひじょう小さな規模で採掘が続けられている。

このように、図山の今後は、下部鉱床の確認と、新鉱床の発見とにかけられている。しかし、1954 年に、鉱床調査の結果にもとづいて、試験をおこない、新鉱床を発見しているので、さらに新しい鉱床の発見も可能であろうという、明るい希望をもつことができた。

この図山には、元山鉱床と、新山鉱床の 2 つがある。

元山鉱床は、新第三紀層の中の、調剤層群と、八雲層群との間で沈存している。ここには、鉱坑・瀬戸坑・満盛坑の 3 つの坑道がある。鶴坑はすでに採掘しきれで、満盛坑は、鉱床の規模が小さく価格の値がないので、採掘を中止している。鶴坑では、マンガン鉱床をともなう虎石は、厚さが 10 m 以上に達している。

新山鉱床は、基盤岩上のマンガン鉱床である。コンペ坑と新鉱坑の 2 坑が開坑されているが、前者は、すでに採掘しきれで、通気坑道に利用している部分で、黒坑となっている。後者は、坑道延長約 600 m に達し、通気が難く、一時採掘を中止することもあるが、そのご、整備してこの坑道を用いる以上の、下部鉱床を採掘している。現在の利用における鉱床区は、最も厚いところで 1.5 m を越している。

5.2 湘 弁 坂

鉱 区 後志国採掘登録第 165 号
所 在 地 濱町郡今金町字美利河
鉱業権者 松浦耕穂 潮瀬郡今金町字美利河

この山は、国鉄瀬戸線美利河駅の東方、約 1 km のところにある。美利河駅から国道にそって、長万部町と今金町との町になっている瀬戸山までゆき、ここから北に、鶴山'l用の道路にそって約 300 m ゆくと、新坑口に達する。鶴事務所は、美利河駅から国道にそって花石の方に約 500 m ゆくと、左側にある。

鶴井は、美利河鶴山元山鉱床と同じで、調剤層群と八雲層群との間に、賦存している。

この鶴井には、鶴井坑と鶴井との 2 坑があるが、両者ともすでに採掘しきれで、黒坑となっている。

現在、地表から採掘中である。

5.3 太 黒 坂

鉱 区 後志国採掘登録第 87 号
所 在 地 潮瀬郡今金町字美利河
鉱業権者 松浦耕穂 潮瀬郡今金町字美利河

国鉄瀬戸線美利河駅で下車し、ここから花石を通ずる国道にそって、約 500 m ゆくと、鶴事務所に到達する。さらに、この事務所から約 500 m いたした道路の右側に太黒坑坑口がある。

明治 30 年頃、国鉄にあった英国人総裁のハワールズ氏に伴って開発され、盛大に移行された。品位 85 % 以上のものを、年間 5,000 ton 〜8,000 ton 生産したものといわれている。そのご、鉱業権者は転々としたが、年産 500 ton 〜800 ton を生産し続けたようである。昭和 14 年、北海道一郎の所有となってから、下部鉱床の開発を計画し、世界第 2 次大戦中に、年間 1,000 ton の採掘を続けたが、昭和 20 年の終戦と共に休止した。そのご、昭和 25 年に再開し、昭和 26 年に鶴鉱業株式会社を設立して、下部鉱床の開発準備をすすめた。昭和 31 年、鉱業権は松浦耕穂に譲渡され、現在にいたっている。現在は労務部 15 名でと、月産 10 ton 〜20 ton を生産している。

鶴井は、調剤層群と八雲層群との間に賦存しており、美利鶴山元山鉱床と全く同じである。なお、黒坑が開坑され、現在、採掘中である。

5.4 花 石 坂（仮称）

鉱 区 後志国採掘登録第 2208 号
所 在 地 潮瀬郡今金町字ジブンナイ
鉱業権者 曽藤 忠 須留市湯倉町 57 番地

国鉄瀬戸線花石駅で下車し、ここから今金に通ずる国道にそって、約 2 km ゆき、釣橋からジブンナイ川にぬける山道を、約 4 km ゆくと、現地に到達することができる。
鉱床は、前記層群に属する安山岩貫す堆巖を下盤とし、八雲層群の泥岩を上盤として、その間に賦存している。かつて、坑道を掘さくして、採鉱したこともあったが、採鉱できるような鉱床は、なかなかいない。現在は、坑道は崩落して、入坑することはできない。ごく小規模な鉱床で、稲荷の対象となるようなものではない。

5.5 セイヨベツ銛山

鉱　区　胆振国試掘探記録第6,100号
所　在　地　山越郡八雲町字セイヨベツ
鉱業権者　富国鉱業株式会社 東京都品川区南品川5丁目
国鉄東瀬戸線今金駅で下車し、ここから八雲町に通る国道にそって、約22kmゆくと、現地に到達する。今金町と日進郡との約16kmの間は、5月から11月上旬まで、バスが運行している。
昭和31年夏から、労務者約10名で、採鉱を始め、昭和32年7月まで続いた。この間に、約20tonの鉱石を出鉱した。現在は、休山中である。
鉱床は、まえのにのべたように前記層群の中に賦存しているものである。ここには、1号坑と2号坑の立入坑道がある。ともに、品位が悪く、連続性に乏しい。

あとがき

以上、今金地域に賦存する、ヒリカ型マンガン鉱床の賦存形態、鉱床と地質構造との関係についてのべた。
すでに、美和田鉱山では、このような点に注目し、鉱床が地質構造の特殊な所に賦存していることを、明らかにし、これらの資料をもとにして、試験をおこない、新鉱床を発見している。
このような、鉱床賦存地域の地質調査を徹底的におこない、地質構造と鉱床との関係、鉱床賦存の待ちようを、はっきりとつかんで、調査をいつそう系統的に行すためめてゆけば、新鉱床の発見される可能性は、まだまだ多いと考えられ、この地域にかけられる期待は、依然大きいのである。

参考文献

1) 大日方順三：後志国及び渡島国鉱床調査報告 北海道の部第12号 1912年
2) 長尾巧・佐々保雄：北海道西南部の新生代層と最近の地史 地質学雑誌40巻〜41巻 1933年〜1934年
3) 吉村栄文・佐々保雄：北海道渡島半島におけるマンガン鉱床の一型式 地質学雑誌42巻 1935年
4) 福富忠男・矢島澄治・陸川正明：北海道工業試験場報告第61号（北海道有用鉱物調査報告第7報） 1935年
5) 福富忠男：北海道工業試験場報告66号（北海道有用鉱物調査報告第9報） 1936年
6) 吉村栄文：日本のマンガン鉱床
7) 松井直敏：北海道後志国今金町東北部地域貫鉱床調査報告書 北海道地下資源調査所 1954年
図版
（6図版）
1) セイヨベッ鉱山2号坑におけるマンガント鉱をふくむ，あずき色を呈する粘土化した凝灰岩と虎石との関係

T: 虎石 At: 含マンガント鉱あずき色凝灰岩
Wt: 灰白色砂質凝灰岩
Tb: 玄武岩質角礫凝灰岩

2) 美利河鉱山元山における虎石の露頭

T: 虎石 Gb: 玄武岩質角礫凝灰岩
1)

（美利河氷山 大道賢治撮影）

2)
3) 下盤の玄武岩質角礫凝灰岩層に鉱巖状に賦存するマンガン鉱（美利河鉱山元山浦栄坑）
 白色の部分： 玄武岩質角礫凝灰岩
 黒色の部分： マンガン鉱

4) 虎石の中に不規則な形の鉱層で賦存するマンガン鉱（美利河鉱山元山浦栄坑切替坑道切羽）
 白色の部分： 虎 石
 黒色の部分： マンガン鉱
5) 基盤岩（花崗岩）の上に貯存するマンガン鉱層（美利河鉱山新山新栄坑掘下り）

花崗岩の礫砕の突出している部分では鉱層は薄くなる。
鉱層の中に墨流し状に焼き質泥岩（白色の部分）がはさまれている。
上壁は、八雲層群の最下部の砂質泥岩。

6) 基盤岩（花崗岩）の上に貯存するマンガン鉱層（美利河鉱山新山新栄坑）

鉱層の中に、墨流し状に焼き質泥岩（白色の部分）がはさまれている。
5)

（美利河鉱山 大道賢治撮影）

6)

（美利河鉱山 大道賢治撮影）