短 報

大雪山地域の氷蝕地形
On the Glacial Erosion in the Taisetsu Volcanic Area.

国府谷 盛明
Moriaki Konoya

まえがき
従来、大雪山係には、氷蝕地形がないと考えられていた。その一つの理由は、現在標高2,000 mを超える大雪山は、第四紀の火山で後氷期になって山体の大半が形成された、という点である。火山地形が明瞭に認められる火山では、地質学的な断層が十分にされないまま、氷蝕の火山であると決まられてきたきらいがある。大雪山系もまた、その例外ではなかった。

地下資源調査所では、上川町の地質以来、大雪山図版などの調査を実施してきた。1961年に、上川町の地質で、この地域の地質の概要を報告した。この中で、大雪山の形成期を考察し、第四紀氷期には、すでに山体の大半を形成し、標高2,000 mに近い山岳を形成していたことを指摘した。大雪山の南に位置する日高山脈では、標高1,600 m前後に氷蝕地形が観察される。当然、大雪山係にも氷蝕地形が残っているともいえずであると考えられた。その後の調査によって、氷蝕地形と思われる地形がみられたので、その一部について、概要を述べる。

報告にあたって、当所瀬藤昌之氏、鉱床地質部長、土着労働観察課長、酒井鈴松地質科長にいろいろ御講議いただき、また調査にあたって、地形計測は松井公平研究職員に御援助いただいた。明記して、謝意を表する。

I 地 質
この報告では、大雪山が第四紀氷期に形成されたことが、どのように確認されたかということを中心にのべる。火山地域では、時代を決めるのに、ふつうの堆積岩や化石などに期待することは、ほとんど不可能に近い。この地域でも、ふつうの堆積岩
は、ほとんどなく、ここで対比の中心になるものは、北海平熔結灰岩と各熔岩。北海平熔結灰岩と層雲峠熔結灰岩、層雲峠熔結灰岩と河岸段丘の相互の関係をもつこととして定めた。全体の地域については短くあるため、ここでは、これらの相互の関係についてのべる。

1）北海平熔結灰岩と層雲峠熔結灰岩

北海平熔結灰岩は、暗灰色の安山岩質のものである。多量の軽石、および黒色で多孔質な特徴のある安山岩質、火山弾をもっている。北海平熔結灰岩は、大雪山の頂上近く、北海平、雲居平などの外輪山と、中央成層火山との間にある凹地を埋めて、平坦面を形成して分布している。また、成層火山の山脈にそって分布し、中央成層火山の北海岳の山頂にも山頂にもみられる。さらに、南部では、小鉢平とも山腹をおおって分布している。北海平熔結灰岩の下部には、厚い北海平軽石層をともなっている。北海平熔結灰岩の中央安山岩質の角礫は、北海岳近辺では多量にともなわれ、一見集塊岩状を呈しているが、東側に向うにしたがい、量が減少する。同時に粒径も小さくなる。一方、熔結灰岩中の軽石は、北海岳近辺では、ごく少量である。雲居平の白水川上流部や黒岳沢川頭近辺では、多量にともなわれている。

層雲峠熔結灰岩は、暗灰色の安山岩質熔結灰岩である。軽石と黒色で多孔質な安山岩角礫をともなっている。大雪岳近辺では、この安山岩角礫は、数cmの粒径であるが、石狩川をそうぞう下流部で、量はいちじるしく減少し、粒径も小さくなる。層雲峠熔結灰岩の下部には、こうした軽石層が堆積している。層雲峠熔結灰岩は、大雪岳近辺より石狩川にそって、旧河谷の低地を埋めて広く分布している。この堆積面は、いちじるしく平坦な面を形成している。

北海平熔結灰岩と層雲峠熔結灰岩との関係は、まったく類似し、ともに黒色、多孔質な特徴のある安山岩質をともなっている。両熔結灰岩が直接連続しているところはない。しかし、安山岩角礫の量、粒径の変化などから、北海岳により発達した中央成層火山が萌芽源であり、中央成層火山と大雪山との間に凹地を埋めて堆積したものである。北海平熔結灰岩は、さらに、外輪山を溢流し、石狩川の旧河谷の凹地を埋めて堆積したもので、層雲峠熔結灰岩である。外輪山からの溢流は、おそらく外輪山の侵食の進んだ東北部と推定されるが、急峻な山腹の場合、その後の方は消長を伴う。分布の連続性、現在はみられない。

2）層雲峠熔結灰岩と河岸段丘

層雲峠熔結灰岩は、ほぼ現在の石狩川にそって地域に分布し、石狩川の侵食作用で形成された旧河谷を埋めている。小雪の近辺では、層厚200mにおよぶが、層雲峠遺留の対岸などで観察されるように、集塊岩や粘板岩の旧河谷壁に、へりつくように堆積している。この地域では、層雲峠熔結灰岩や山川浜熔結灰岩におおわれているため、中央ないし高い各段丘面については不明な点が多い。しかし、上支渓別図では、第3段丘堆積物によっておおわれていることが知られている。また、石狩川の下流では、現河床から数mの比高をもつ河岸段丘によってきている。この点から、層雲峠熔結灰岩の上限は、少なくとも、これらの段丘堆積以前ということになる。次に、これらの段丘の時代については、この地域では、まだ明らかにされてはいない。しかし、この地域の東側にあたる白滝川で行なわれた、白滝川調査の成果を引用することができる。白滝川調査は、水文採取とともに、無土器文化遺跡の研究から、沖積段と洪積段との段丘の区分を明確にし、白滝と大雪地域では、石北側を分水界として、相接した地域で、両者の河谷地形は類似している。石北側を基にして、洪積段末期を東側と西側にいわししく不対称な構造運動があった証拠はない。したがって、両者の段丘を比高、面の性格で大体対比することは可能であろう。層雲峠熔結灰岩をきる段丘は、白滝における無土器文化をもう一つに対比され、洪積段であることは確実である。したがって、層雲峠熔結灰岩と北海平熔結灰岩は、ともに少なくとも洪積段末の火山作用によるものである。

3）北海平熔結灰岩と各熔岩との関係

北海平熔結灰岩は、すでに述べたように白雲岳、赤岳、黒岳、鍋岳、焼岳、鍋岳などの外輪山と、北海岳に代表される中央成層火山との間の、凹地を埋めて分布している。赤岳と黒岳、鍋岳の間を流れる赤岳川では、赤岳の外輪山熔岩の侵食された山腹の急斜面を不整合におおいう、あちこち、急な崖へりつくような形でおおわれている。同じような現象は、黒岳の西側部でもみられる。また、白雲岳山頂の小火口ににも北海平熔結灰岩が堆積している。北部の雲居平では、黒岳、柱月岳、
大雪山地域の氷蝕地形

凌雲岳などを侵食した河谷にそって、外輪山熔岩を不整合におおっている。

以上の諸点から、外輪山熔岩は、外輪山形成後、赤岳沢、白沢、その他の河川の原形を形成するような、大きな侵食間際をへて、北海平熔結凝灰岩に不整合におおわれることになる。したがって、白雲岳、赤岳、鳥嶺子岳、黒岳、凌雲岳、北鎌岳の諸峰は、洪積世末には、すでに形成されていたことを、動かしがたい。

大雪山附近的高位の段丘については、なお不明な点が多いが、隣接する石狩岳周辺の段丘とくらべて、ほとんど高差差はみとめられない。したがって、この地域に、いちらしい相対的な上昇運動が、洪積世末には認められない。また、日高地域にくらべても、とくにいちじるしい相対的な構造運動（600m以上におよぶ）の証拠はない。この点から洪積世末には、大雪山は、ほぼ現在に近い高度の山体を形成していたということになる。日高山脈で、標高1,400〜1,600m附近に、カールが発達しているので、大雪山でも、雪線以上の高度にあったと考えられる。

氷蝕地形

外輪山熔岩で形成されている山体には、氷蝕地形と考えられる地形が各所にみられる。このうち、とくによく観察される地形として、白雲岳東側の地形と、桂月岳と凌雲岳の間にある、白水川谷頭の地形については述べる。

1) 白雲岳

白雲岳の東側に発達している。この地形は東南方向に開いた凹状地形で、50〜80mの急な崖が、半円状にとりまっている。この崖の下部は、外輪山熔岩で構成される岩層でおおわれている。岩層は、数10cmから2〜3mの角巖で、ほとんど土壌は発達していないが、ミネソウ、イワタケ、イタヤクサなどの植生をともなっている。この半円形の急崖にとりまかれただ下部は、ひじょうに平坦である。この低地の北と南には、小さな流れがあれ、わずかに低くなっている。また、南西側には、つねに残雪があり、岩層の堆積は少なく、やや低くなっている。夏期には半円形の氷渓を形成し、この周辺には湿地が発達している。この平坦面には、黄褐色の砂質堆積物が堆積している。

平坦面の前に、比高13mの小丘がある。南北に約100mの三ヶ月形の小丘で、平坦面に面を向けている。平坦面の側では、ひかくのゆるい傾斜があるが、凸面の側では、急な傾斜でヤンペバップ川に面している。約30m下で、ふたび平坦な面を形成している。この小丘を構成している堆積物は、外輪山熔岩の数10cmから2〜3mの角巖および黄褐色砂質堆積物である。この点は、岩屑堆積物はまったく異なり、植生もハイマー、ナカナサイ、ツガザクラ、ミヤマカンバイで代表される。以上の地形から、半円形にとりまいている急崖は、囲谷壁にあたり、平坦面は囲谷底、白雲小岳の建っている小丘はモレーンにあたるものである。このモレーンの下部に、やや平坦な地形がみられるが、この堆積物も、モレーン状の堆積物であるが、ヤンペバップ川の浸食により、地形はいちらしく崩壊されている。この地域の氷蝕地形にも、2期みとめられる可能性があるが、不明な点が、まだ多い。囲谷底は標高2,000mの高さである。

2) 白水川谷頭

白水川の上流部で、凌雲岳と桂月岳の間に、北東に口を開いた馬蹄形の四地地形が発達している。囲谷壁は、70〜100mの高さで、半円形にとりまく。

囲谷壁の基部は、前期の岩層でおおわれている。囲谷底は、北にゆるく傾いた平坦な面を形成している。この地形は白水川が貫流しているので、粘土質の堆積物はなく、ガレになっている。前端の山腹斜面には、黄褐色の砂質堆積物をともなう角巖の堆積物が、標高10mの高さに残されている。白水川にそって、囲谷底より、比高2〜3mの高さで、黄褐色砂質堆積物をともなう角巖の堆積物が殻状に堆積している。ここでは、囲谷の形成後、白水川の侵食による、囲谷底は2分され、わずかに、モレーン状堆積物が残っているに過ぎない。囲谷底は、標高1,900mの高さである。

この地域で代表的な氷蝕地形と考えられる2例の地形について述べたが、ほかにも、類似した地形、あるいは氷蝕地形と考えられる多くの地形がみられる。日本の多くの氷蝕地形が、変成岩地域で観察されているに比対し、この地域は、火山であるので、氷川以外の浸食作用により、ほかの地域にくらべて、いちらしく原形がもとまっている。したがって、ほかの地域の地形にくらべて不明確な点が多い。また、馬蹄形の凹円形地形は、爆裂火口と類似している。実際、筆者の指摘した氷蝕地形の多くは、従来、爆裂火口とされていたものである。しかし、囲谷壁にあたる部分に平坦な面を形成し、さらにその前面に、
角礫の堆積物による小丘がみられ、新期の岩屑に対し、土壌化が進み、ハヤマツなどの植生が特徴となっている。この堆積物の前面は急傾斜で沢に面している特徴があげられる。このような地形は、現在のところ、大雪山の北側および東側に大部分みられ、標高1,800〜2,000 mの地域にかぎられている。このことと、大雪山の構造土の発達が、標高1,800 m以上のところにかぎられて、分布していることとは、無関係ではないかと考えられる。