千歳市北部地域の地盤と地下水

山口久之助・佐藤巌・小原常弘・早川福利

まえがき

支笏・樽前火山の広大とした概観に、戦後の無駄に多くの言葉をもたらした千歳市は、空港ターミナルの町あるいは観光地支笏湖への間隔の町としても有名となってきた。そしてまた最近では、広大な未利用土地資源を最大の強みとして生産活動に産力が注がれ、道央ベルト带新産都市の一極点として地元の声をあげようとしている。

本文は、千歳市の北部に設けられた北信濃工業用地について、地盤ならびに地下水調査の結果を述べている。これらの調査は千歳市の規制に基づいて行なわれたもので、調査期間は、既存井の電気検出が9月9日、10日、水質調査と地耐力調査が10月18～20日と2回にわたっている。

1 水理地質概況

工業用地の地盤と地下水についての述べに先立ち、まずこの用地が置かれている水理地質的環境をやや広い視野に立って展望しておかねばならない。

第1図にみられるように、千歳市は南部石狩低地帯のほぼ中央軸上に位置している。すなわち低地帯は、東側は馬追山脈で、西側は支笏火山群で囲まれ、千歳付近における低地帯の幅はおよそ30 kmにおおよぶ。

石狩低地帯は、地質学上で道央地域と道東地域を区分するところの大きな構造帯である。第三紀末以降において沈下し、ある時期に至って海域となって地層堆積の場となり、ある時期には陸域となるなど、幾度も海進と陸化が繰り返され現在の姿になったと考えられている。

この低地帯は、千歳付近においては、地形上でも、また構造上でも、東西で非対称となっている。

まず地形上では、千歳市南部は、低地帯はぐるぐるやかな西高東低をなしていることである。これによって、千歳市南部と地層堆積物中で上部層であるところの低地帯と樽前火山堆積物の分布に関係する。すなわち、これらの噴出物は、火山台地の頂や周辺に広く分布しているからである。この噴出物のために、地形上での低地帯の西側境界の位置が不明瞭となっている。

次に構造上では、低地帯の両側を構成する地質が大きく相違するということである。すなわち、東側のそれは、泥岩・砂岩・曜岩など主として海成の第三紀層であるのに対し、西側のそれは、安山岩・輝煌岩など主として火山活動の産物である。そしてその火山活動は、第三紀からより続き、現世にまでおよんでいる。低地帯には、東西いずれかの第三紀層が基盤として存在しているはずであるが、千歳北部（新川市）で行なわれた深度300 mの天然ガス調査ポーリングをはじめ多数の既存深井のうちで、地盤しているものは見当たらない。したがって低地帯の堆積物——主として第四紀層——はかなり厚い、とということができる。

支笏・樽前火山噴出物をはぎ取ってながめた場合、低地帯の堆積物はいわゆる溶岩地盤として、帯水層を幾枚か挟むということが知られている。この溶岩地盤のうち、深層带水層をも伴う帯水層の分布範囲は、第1図中の2条の破線間であるとみられる。そして低地帯の西部ほど、帯水層の厚層・層数、透水性など優
1: 主として第三紀〜第四紀火山岩類（安山岩・凝灰岩・集塊岩等，一部に非火山性岩層）
2: 主として海成第三紀岩類（泥岩，砂岩，礫岩等）
3: 中・下部洪積層
4: 塊漂・支笏火山噴出物（軽石，同質凝灰岩）
5: 沖積低地基礫物

第1図 調査地域の位置

れているという傾向が認められる。このことから，さきのにのべたところの低地帯の東西非対称に関係がある。なお，これらの帯水層中に含まれる深層地下水は，低地帯西側の山地を主たる涵養地域とし，支笏湖水とは直接的な関係をもってないと考えられる。

2 地盤と地耐力

工業用地は，第2図に示すように千歳市町北方で，国道36号線と国鉄千歳線との平行軸線に挟まれた約55歳の地積で，いわゆる火山灰台地のうちにも含まれ，海拔20〜30 mの間にあってゆるやかな波状地形を呈している。

以下に述べる地盤調査は，具体的な構造物に関しての基礎地盤の調査ではなく，用地全般についての土質および地耐力の概要を知るという目的で行なわれたものである。測点配置は，第2図に示すように計10点で，調査深度はそれぞれ10 mまでとした。使用器具はスウェーデン式貫入試験器で，その規格は次のとおりである。
スクリューポイント：最大径 33 mm，全長 20 cm
ロッド：径 22 mm，長さ 1 m の 11 本
載荷分岐：5 kg × 1，10 kg × 2，25 kg × 3

地盤調査の記録を整理して図示すると、第 3 図および第 4 図のようになる。このうち第 3 図は、用地のほぼ中央位置でえられた記録であり、そして用地一帯に関して模式的な土質状態をあらわしているので、これを基準として少しく解説と考察を加えてみよう。

この地帯における深度 10 m 以浅の土質は、地質学的には第 1 表のように区分することができる。

第 1 表の 3 層は、第 3 図において貫入抵抗の高い部分にそれぞれ相当している。すなわち、樽前火山噴出物は深度 4 m 付近まで、恵庭火山噴出物は深度 7 m 付近まで、そしてその下は支笏火山噴出物となっている。また、これらの 3 層の間に挟まれる低貫入抵抗部分は、それぞれの上部の風化帯か、もしくはローム質の再堆積物であり、とくに低い部分、たとえば深度 4 m 付近は腐植土であるとみられる。

そこで第 3 図を凡例として第 4 図をながめてもみると、No. 7 を例外として、次のような幾つかの知見がひきだされる。
1 樽前火山噴出物は、全般を通じて地表下 4 m 付近まであり、その上半部で深度 1 m 前後のところに厚さ 50 cm 以内の腐植土を挟んでいる。
2 樽前火山噴出物の直下にも、厚さ数 10 cm の腐植土あるいはローム質土壌
第4図

第1表 深層の土質区分

<table>
<thead>
<tr>
<th>層名</th>
<th>厚さ（m）</th>
<th>相</th>
<th>枠度</th>
<th>色</th>
<th>調</th>
<th>備</th>
<th>考</th>
</tr>
</thead>
<tbody>
<tr>
<td>樺前火山噴出物</td>
<td>3〜4</td>
<td>軽（浮）石礫</td>
<td>伏茎</td>
<td>灰白〜淡麗色</td>
<td></td>
<td></td>
<td>うすい塩を3層以内挟む</td>
</tr>
<tr>
<td>恵庭火山噴出物</td>
<td>2〜3</td>
<td>軽（浮）石礫・砂・ローム</td>
<td>粗〜細</td>
<td>灰褐色〜赤褐色</td>
<td>粗〜細，多孔質</td>
<td>気化進む，上下に塩土をともに上 もうところあり</td>
<td></td>
</tr>
<tr>
<td>支笏火山噴出物</td>
<td>4〜5</td>
<td>軽（浮）石礫灰岩</td>
<td></td>
<td>灰色〜淡紅色</td>
<td></td>
<td></td>
<td>上部は風化，再堆積物をのせる</td>
</tr>
</tbody>
</table>
3 それ以下で深さ7〜8mまでは主として恵庭火山噴出物に由来する地層であるが、これは、風化・浸食・
淘洗・再堆積などによって、垂直的には、水平的にも変化に富んでいる。
4 深さ7〜8m以下は、下盤凝灰岩に由来する再堆積物（浮石砂）の挟みを経て、軽（浮）石質凝灰岩とな
る。これはいったんから基質抵抗が衰減していることから、表層は風化していることが予想される。
5 以上にあげた各層の境界面をながめると、樽前火山噴出物の下限面は現地形とはほぼ平行しているが、恵
庭火山噴出物の下限面または支笏火山噴出物の上限面は地形面と平行していない。また定高性を呈してもい
ない。むしろ、現地形よりも起伏が大きく、かつ東方へ深まっている。
6 各測点における地下水位は、当時判明したもののだけを図に記入したが、地質（土質）とはあまり関係な
さそうである。

さて、スエーデン式貫入試験における載荷重量 Wkg または貫入 1mあたりの半回転数 Ns と、標準貫入
試験における N値（打数/50cm）との関の関係は、砂と礫の場合において

\[N = 0.02 W \]

\[N = 2.0067 Ns \]

五で与えられている。上式を使って用内地の土質の N値を算出すると、深さ8〜9m以下はN<10であり、
ほぼ10mにいたってN=12〜15となる。N値が10以下の地層は、たとえば布基質の場合には凝固を必要
とされる。またN値が12〜15の地層の許容支持力は、安全率を3として12〜18t/m²を想定する。ただ
しこれらの値は砂・礫に関するものであり、浮石砂とか凝灰岩に関するものではない。N値は同じでも、後
者の場合の強度と支持力は、多少上まわるといわれている。また、第3図および第4図の Ns の傾向からみ
て、支笏火山噴出物の支持力は、10m以深で増することが予想される。

3 地下構造と帯水層

用地とその周辺には開拓農家が散在している。これらの農家の飲料水は、深度150m級の深井戸、もしく
は深度10m以内の浅井戸でまかなわれている。深井戸の地下水位（圧力面）は、国鉄沿線以東では地表面
上に達して自噴を呈するが、国道沿線以西では地表面の高度が相対的に高い関係で自噴しない。その
ため、非自噴井はほとんど廃井となっている。井戸は自噴井を設けてポンプ揚水をしている。

火山灰（軽石）は透水性がよいので、用地内には地表水系はみられないが、反面、浅層地下水はあるてい
ど期待することができる。しかし浅層地下水は、その水位と流量に位置的および季節的な変化が大きい
と考えられるので、今回の調査対象から除外した。

用地周辺における深井戸の位置は第2図のとおりである。これらの井戸のうちNo.1のほかは、掘さく深
度が判明しているだけで、地質や地下水深度などについての資料は持っていない。しかし幸いなことに、既存
井は竹管井なので、これらのうちで可能なものについて電気読層を実施した。なお千歳市では、地質・水
質・水量等を確認する目的で、径75mm、深度180mのテスト井を図の地点（No.1）に設けられた（吉
小牧配給設備工事KⅡ施工）。この井戸は現在のところ未完成であるが、えられた地質資料と電気読層記
録をと照合し、その結果を既存竹管井の電気読層記録と比較して示すと、第5図および第6図のようになる。
このうち第5図右端の資料は施設者（札幌地質工業KⅡ）の提供によるもので、井戸地点は第2図外に出る。
第5図はほぼ東西断面を、第6図は南北断面をあらわしている。ただし図上の井戸間隔は、井戸の距離に比
例配分してはいない。第5図の両側距離はおよそ2.3km、第6図のそれは3.8kmである。

さて両図を観察して、用地付近では支笏・樽前火山噴出物は地下65m前後まで分布し、帯水層を挟んだ
第四紀層はそれ以下に分布していることがわかる。次に全体について、やや詳細な説明および考察を加えよ
う。

1 榎前火山噴出物は、図では最上位にある厚さ5m弱の浮石礫で一括される。このうち深さ1m前後
には、薄い腐植土層を挟んでいるところがある。

2 深さ5m付近でシルト・粘土として示された地層は、すでにのべたように、おそらくローム質の恵庭火
山噴出物と植土であろう。
第3図 深井戸地質柱状図（東西断面）

3 支笏火山喷出物は、前項の下に厚く伏在している。さくら井工程の速速（短さ）と電気検層記録上の極高
比抵抗部とは同様火山噴出物に関する知識に結びつけて考えると、下部の浮石質凝灰岩の間には凝結凝灰岩
相が図のように挟まれている。

4 支笏火山噴出物の下限面は、現面下40m前後にあって、当地内においては、かなり平坦である。
そしてその直下に腐植土層のあることが目立われる。これらのこととは、火山噴出物を乗せた面が当時の低地
帯中央部においても海域でなく、低湿局であっただろう、ということを物語る。

5 支笏火山噴出物の下で、深度120m前後に挟まれる砂層までの間の地層は、その上半部では細砂とシルト
との互層もしくは混合層であるが、下半部は単一な厚いシルト層である。そしてこの間は、上・下部を通
じてはほぼ水平に近く成層している。

6 深度120m前後の砂層を境として、その下に砂とシルトの互層が再びあらわれる。また一部に泥炭を挟
千歳市北部地域の地盤と地下水

第6図 深井戸地質柱状図（南北断面）

なっている。この両層は、上位の互層のように広く水平的に成層していないが、これから上位の互層までの間は整合的とみなされる。そして深度100m付近のシルト層の堆積期を海進の頂点として、海底が浅いほど、深いほど大きく変化したことを暗示している。これらおそらく、リス/ウルム間水期にあたっていたよう。

7 最下位には、つまり140m以上に厚い砂層が分布している。この砂層は、上位の互層と整合関係にあるかどうかわからないが、当地域においては主要な帯水層である。

8 帯水層としては、前項のほか深度120m前後の砂層と、支笏火山喷出物の基底部もしくは下部浮石質凝灰岩などが指摘される。ただし、120m前後の砂層は観察して貧弱であるから、水量・水質ともに劣っているよう。

9 支笏火山物の基底部には、きわめて有効でかつ泥圧した地下水のあることが知られている。しかしこれ

* 新生乳業1号井、千歳ふ化場井など
は、層状に広く分布しているかどうか疑問である。おそらくその分布は、支笏火山噴出物が堆積する直前の吉地地形——主としてその河谷筋と関係があるであろう。

10 下部浮石質焼灰岩のうちで下部寄りに、透水性のやや優れた浮石礫層が挟まれるらしい。これは島松浮石層と命名されているものに相当しているよう。面積面では、これら採水している工場用水井があるが、多くの水量を期待することは困難のようである。

4 地下水の水質

用地の周辺に存在する深井の水質は第2表のようである。表示の水質調査は観測4 km以内にあって、しかも概ね同一帯水層（用地内では深度150 m前後）から採水しているものばかりであるから、当然のことながら各井の水質に大差は認められない。なお参考資料として、千歳川および漁村のそれぞれ上流部での平均水質も表示した。

当地的深層地下水の水質の型は、第2表に示すように、ごくありふれた炭酸塩硬度型である。そして深層地下水としては成分濃度は高くなく、珪酸分（SiO₂）と過マンガン酸カリ消費量（COD）がやや多いというほかには、工業用水としての難点は認められない。

ところで第2表を吟味すると、これからの地下水の上・下流の方向が見出される。すなわち、この深層地下水系は、西方（12）から東方（9）へ進化（流動）している。また、表示の水質組成上で最も安定な成分であるところの塩素イオン（Cl⁻）の濃度に着目すると、この深層地下水系は支笏湖水（千歳川）と関連のないことがうかがわれる。もしこ水川水系の水質的因子をそなえているといえよう。

以上のような事柄を、他の成分について上流から下流方向へ配列して示したのが第8図である。まず水温は、上流から下流方向へと上昇して、この図でおよそ3℃の差を生じている。また成分濃度は、水比抵抗値からうかがうと、下流域では増加している。用木として一部問題となる鉄分は、幸いなことに用地内ではほとんど検出されず、鉄鉱線を越してから急増している。CODについてもはや同じ傾向がみられる。この2成分と、NH₄およびFreeCO₂とは相互に関係が深く、いずれも採水層もしくはその上・下層に含まれる有機物の消費と直接あるいは間接に関連している。このことから、用地付近では、帯水層そのものも低地帯側の支配力をより強くうけ堆積したということが推察される。

<table>
<thead>
<tr>
<th>No.</th>
<th>所在地</th>
<th>所有者</th>
<th>井深 m</th>
<th>井径 mm</th>
<th>ストレーチ m</th>
<th>自然水位 m</th>
<th>自然水量 m³/day</th>
<th>自然水温 ℃</th>
<th>pH</th>
<th>Cl mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>千歳市北側濃</td>
<td>中島</td>
<td>150</td>
<td>竹</td>
<td>+</td>
<td>+0.6</td>
<td>12</td>
<td>9.9</td>
<td>7.7</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>千歳市北側濃</td>
<td>郡 勝 重信</td>
<td>168</td>
<td>竹</td>
<td>-0.7</td>
<td>9.4</td>
<td>6.9</td>
<td>10.4</td>
<td>7.7</td>
<td>6.9</td>
</tr>
<tr>
<td>5</td>
<td>千歳市北側濃</td>
<td>清水</td>
<td>150</td>
<td>竹</td>
<td>-1.5</td>
<td>11.1</td>
<td>6.4</td>
<td>11.5</td>
<td>7.9</td>
<td>6.2</td>
</tr>
<tr>
<td>6</td>
<td>千歳市北側濃</td>
<td>遠藤 久義</td>
<td>160</td>
<td>竹</td>
<td>137〜142</td>
<td>10.8</td>
<td>7.6</td>
<td>11.3</td>
<td>7.3</td>
<td>6.9</td>
</tr>
<tr>
<td>7</td>
<td>千歳市北側濃</td>
<td>中島 陽助</td>
<td>150</td>
<td>竹</td>
<td>+</td>
<td>11.1</td>
<td>6.4</td>
<td>11.5</td>
<td>7.9</td>
<td>6.2</td>
</tr>
<tr>
<td>8</td>
<td>千歳市北側濃</td>
<td>坪井 勉</td>
<td>147</td>
<td>竹</td>
<td>138〜147</td>
<td>12.1</td>
<td>7.5</td>
<td>11.2</td>
<td>7.5</td>
<td>6.9</td>
</tr>
<tr>
<td>9</td>
<td>千歳市北側濃</td>
<td>植 沢 茂</td>
<td>180</td>
<td>竹</td>
<td>+</td>
<td>11.1</td>
<td>6.4</td>
<td>11.5</td>
<td>7.9</td>
<td>6.2</td>
</tr>
<tr>
<td>10</td>
<td>千歳市 郡</td>
<td>高橋 俊雄</td>
<td>146</td>
<td>竹</td>
<td>142〜146</td>
<td>115</td>
<td>7.6</td>
<td>12.1</td>
<td>7.5</td>
<td>6.9</td>
</tr>
<tr>
<td>11</td>
<td>千歳市 郡</td>
<td>伊藤 悦郎</td>
<td>200</td>
<td>竹</td>
<td>+</td>
<td>11.1</td>
<td>7.4</td>
<td>11.2</td>
<td>7.5</td>
<td>6.9</td>
</tr>
<tr>
<td>12</td>
<td>千歳市上八部</td>
<td>木 郷 十郎</td>
<td>120</td>
<td>竹</td>
<td></td>
<td>39</td>
<td>8.4</td>
<td>7.4</td>
<td>13.0</td>
<td>6.7</td>
</tr>
</tbody>
</table>

* 住藤吉野石舍、森永乳業2号・3号井など
** 支笏湖心部でClが21.0 mg/lというデータがある。
第7図 水質組成図

水質

<table>
<thead>
<tr>
<th>SO₄</th>
<th>HCO₃</th>
<th>Free</th>
<th>CO₂</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>CaCO₃</th>
<th>Fe</th>
<th>SiO₂</th>
<th>COD</th>
<th>NH₄</th>
<th>比抵抗</th>
<th>18℃</th>
<th>Ω・m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>139</td>
<td>2.1</td>
<td>15.2</td>
<td>8.4</td>
<td>15.5</td>
<td>9.0</td>
<td>75.8</td>
<td>tr</td>
<td>37</td>
<td>9.4</td>
<td>0.00</td>
<td>50</td>
<td>50</td>
<td>微有機味</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>128</td>
<td>2.9</td>
<td>13.1</td>
<td>7.5</td>
<td>14.2</td>
<td>8.6</td>
<td>70.7</td>
<td>0.16</td>
<td>35</td>
<td>11.5</td>
<td>tr</td>
<td>53</td>
<td>53</td>
<td>微赤色</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>144</td>
<td>2.9</td>
<td>15.5</td>
<td>8.3</td>
<td>16.1</td>
<td>8.7</td>
<td>76.0</td>
<td>0.00</td>
<td>36</td>
<td>9.2</td>
<td>0.00</td>
<td>55</td>
<td>55</td>
<td>微有機味</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>137</td>
<td>1.5</td>
<td>16.1</td>
<td>8.5</td>
<td>14.2</td>
<td>9.7</td>
<td>75.2</td>
<td>tr</td>
<td>39</td>
<td>9.0</td>
<td>0.00</td>
<td>54</td>
<td>54</td>
<td>微有機味</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>153</td>
<td>2.1</td>
<td>15.1</td>
<td>8.2</td>
<td>15.5</td>
<td>9.5</td>
<td>77.5</td>
<td>0.00</td>
<td>39</td>
<td>11.0</td>
<td>tr</td>
<td>51</td>
<td>51</td>
<td>微有機味</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>137</td>
<td>3.3</td>
<td>15.9</td>
<td>8.2</td>
<td>14.3</td>
<td>8.7</td>
<td>71.6</td>
<td>0.00</td>
<td>42</td>
<td>10.7</td>
<td>0.29</td>
<td>53</td>
<td>53</td>
<td>微有機味</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>214</td>
<td>5.3</td>
<td>32.5</td>
<td>12.6</td>
<td>14.8</td>
<td>11.9</td>
<td>86.3</td>
<td>0.49</td>
<td>42</td>
<td>20.4</td>
<td>0.09</td>
<td>33</td>
<td>33</td>
<td>微有機味</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>143</td>
<td>6.6</td>
<td>18.3</td>
<td>9.5</td>
<td>13.2</td>
<td>10.0</td>
<td>74.0</td>
<td>0.32</td>
<td>34</td>
<td>15.2</td>
<td>1.20</td>
<td>38</td>
<td>38</td>
<td>有機味</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>202</td>
<td>8.1</td>
<td>18.6</td>
<td>11.3</td>
<td>13.1</td>
<td>10.9</td>
<td>77.5</td>
<td>0.63</td>
<td>40</td>
<td>14.3</td>
<td>0.26</td>
<td>41</td>
<td>41</td>
<td>有機味, 酸著色</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>66</td>
<td>3.5</td>
<td>9.9</td>
<td>1.6</td>
<td>9.4</td>
<td>3.6</td>
<td>38.4</td>
<td>0.77</td>
<td>49</td>
<td>8.5</td>
<td>tr</td>
<td>92</td>
<td>92</td>
<td>有機味</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>43</td>
<td>2.0</td>
<td>17.0</td>
<td>2.1</td>
<td>12.5</td>
<td>4.4</td>
<td>49.0</td>
<td>tr</td>
<td>30</td>
<td>8.1</td>
<td>0.00</td>
<td>60</td>
<td>60</td>
<td>有機味</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>1.9</td>
<td>5.4</td>
<td>1.2</td>
<td>5.9</td>
<td>2.1</td>
<td>23.4</td>
<td>tr</td>
<td>36</td>
<td>5.0</td>
<td>tr</td>
<td>167</td>
<td>167</td>
<td>有機味</td>
<td></td>
</tr>
</tbody>
</table>

第8図 水質の位置的変化
5 期待揚水量

地下水の水量は、天然状態では帯水層の大きさとか透水性など地下水の容器としての性能のほかに、地下水漑源の規模や位置などによって定まるけれども、人間行為——揚水——が加わることによって、増加する場合もあるし、減退する場合もある。だから、その水量を推測することはきわめて困難である。しかし、用地内で何箇所の地下水の揚水量を半永久的にかつ安全に得られるかということは、最も重要な課題であろう。このような課題に答えるには、少なくとも1井についての充分な揚水試験データを必要とする。残念ながら現在のところそれがない。それでここでは、最寄りの地域において共通の排水地盤に設けられた深井のデータを引用してのべてみたい。

第9図は、最寄りの地域における深井について、井径と揚水効率との関係を示している。ここで揚水効率とは、揚水層厚1mあたりの比揚出量（水位降下1mあたりの揚水量）である。たとえば、揚水層厚が20m、自然水位が-1m、揚水水位が-6m、揚水量が1,000m³/dayという井戸の揚水効率は10m/dayである。

そこで第9図のデータを参照の場合にはあてはめてみよう。まず揚水層厚は栃木県（No.1）の結果から143m以深に30m以上も見込まれるので、これを30mと仮定する。次に揚水条件として、自然水位は0m（地表面）に、また揚水水位は地下5mに保たれているとする。

さて、以上の条件と第9図から、井径100mmでは揚水効率を0.5とみて揚水量は750m³/day、井径200mmでは揚水効率を1.0とみて揚水量は1,650m³/day、井径300mmでは揚水効率を1.5とみて揚水量は2,550m³/dayとそれぞれ期待されることになる。しかし安全性を考慮すれば、井径100mmで揚水量は500m³/day、200mmで1,500m³/day、300mmで2,000m³/dayといえるが、現状では困難であろう。いずれの場合も、必要な井深は180mである。なお、用地内に井数が多くなった場合におこりうるところの相互干渉、あるいは自然水位の低下などについて予測することは、現状では困難である。

む す び

千歳市の北部に造成されようとしている工業用地は、南部石狩低地帯の中央部に位置している。用地一帯は厚さ4mほどの樽前火山噴出物（軽石）でおわれ、その下には厚さ2m前後の恵庭火山噴出物（軽石）と、厚さ60mにもおよぶ欠乏火山噴出物（凝灰岩）とが分布している。

恵庭火山噴出物は滑脱の地耐力は概して小さく、N値の換算値で10以下のものである。欠乏火山噴出物には、地耐力は3~5m付近でN=12~15となる。20t/m²以上の許容支持力がえられる深さは、おそらく10数mとなるであろう。

深層地下水を詰めている第四紀砂疊層は、欠乏火山噴出物の下にあり、主要な帯水層は地下140m以深に厚く存在している。この帯水層の中の帯水層は、水質概ね良好、水量も豊富である。たとえば、径200mmの深井戸では揚水量1,500m³/dayを見込むことができる。
献

1) 山口久之助ほか：北海道水理地質図帳「苦小牧・室蘭」および同説明書，北海道立地下資源調査所，1963
2) 北海道水理地質図帳「札幌」および同説明書，北海道立地下資源調査所，1964
3) 土居繁雄・小山内照： 5万分の1地質図帳「石山」および同説明書，北海道立地下資源調査所，1956
4) 土居繁雄： 5万分の1地質図帳「樽前山」および同説明書，北海道開発庁，1957
5) 種田倍総： スケーデン式サウンディング試験結果の使用について，土と基礎，Vol.8，No.1，1960
6) 土質工学会： 土質試験法解説（第2集），P. 252，1961
7) 山口久之助： 竹管井の電気検層について，地下水技術協会誌，Vol.6，No.3，1964
8) 勝井義雄： 支笏湖下層石堆積物中の化石林について，地質学雑誌，Vol.64，No.755，1958

Subsurface geology and groundwater
in the north of Chitose City

By

Hisanosuke Yamaguchi, Iwao Sato, Kiyoshi Futamase, Tsunehiro Ohara
and Fukutoshi Hayakawa

Abstract

A group of sites is now prearranging for new factories in the northern suburb of the city Chitose. The entire sites, viewed from the geological point, are situated in the gentle slope of the volcano Tarumae. Further, they are just lying on the southern margin of the Sapporo-Tomakomai depressional belt, the beging of which is generally believed to have been at the dawn of the Neogene. Through the aid of many drillings, the Neogene formation in this depressional belt already became evident to reach more than two thousand meters in thickness, and the covering Quaternary formations to be several hundred meters.

The subsurface geology in the sites, now in problem, can be outlined as follows in descending order: tephra of the volcanoes Tarumae and Eniwa (Shikotsu), Lower Pleistocene deposits, and the Neogene formation; the top of the last named formation is at the depth of several hundred meters from the surface. Of them, the Lower Pleistocene deposits are chiefly composed of silts, sands, gravels and peats, being almost free from pyroclastic sediments and bear many aquifers in certain horizons. To the contrary, the formations covering the Lower Pleistocene deposits are exclusively volcanic in origin, ranging from the Latest Pleistocene to the Middle Holocene. They may be either pumiceous tuff, welded tuff or ashes with or without pumice, the total thickness is as thick as 70 m.

The pumiceous ash layers brought from the volcanoes Eniwa and Tarumae widely covers the sites for new factories, which are several meters in total thickness. Below these tephra, comes the volcanic product of the Shikotsu caldera, composed of pumiceous tuff and welded tuff, the base of which is situated at the horizon about 40 m below the sea level. The volcanic products of the Eniwa and Tarumae are not well consolidated yet, the bearing power of which is small, whose N value is generally less than 10. To the contrary, N value of the Shikotsu pumiceous tuff is a little large, 12 to 15 at the depth of 10 m below the surface for instance. Further the N value in this pumiceous tuff seems to gradually increase with depth.

The most important aquifer found in the sites lies at about 140 m below the surface, whose
thickness is estimated to be over 30 m. The groundwater in this aquifer shows good quality.

From drilling well with 200 mm in diameter at the depth of 180 m for instance, water of 1,500 m³/day is now pumping up.