西南変海道，羊蹄山南麓地域の層序と地下構造について

大 津 直

まえがき

西南変海道北部地域は、東北日本弧内帯の北方延長部分に当たり、膨大な新生代の火山岩類や火山碎屑岩類が堆積岩類と共に広く発達するとされる。これらの地質系は東北日本弧内帯のいわゆる“グリーンデン地域”に含まれ、地質は先新第三系を基盤とし、新第三系・第四系および貫入岩類によって構成される。

本調査を含む羊蹄山南麓地域は第四系の火山噴出物や砂・礫・ローム等に広く覆われているため、これまで層序・地質構造の研究例は非常に少なかった。近年、ニセコ地域や西胆振地域は新エネルギー産業技術総合開発機構等による地熱・温泉探査が多くおこなわれ、地下地質の層序・構造（たとえばニセコ地域の地熱賦存については新エネルギー総合開発機構（1987）、西胆振地域については和田ほか（1988）があげられている）が明らかにされた。これらの調査結果から筆者は、羊蹄山南部地域にも新第三系に形成された堆積盆地が幾つか存在することを推定した。

当所は平成2年度に地熱探査として真狩村にいて、探査1000mの測井ポーリングを实施した。筆者は本調査において羊蹄山南麓の層序および坑井地質を検討し、さらにこれまででなされていない物理探査（電気探査・重力探査）の知見を加味し、掘削地点を中心とする堆積盆地の地下構造を考察する。

なお、取りまとめに当たって、当所の松波武雄地域エネルギー科長に地質全般についてご討論いただいた。また、厳島・積海洋地質科長には堆積化石の分析を、戸間村中一氏には岩石の薄片を作製作していただいた。また、現在地調査においては川崎史博を開発技術科長・高橋徹研究職員には、掘削技術についてご指導いただいた。報告に先立ち上記の方々に明記してお礼申し上げる。

I 地質概説

真狩周辺の新第三紀以降の地質は新エネルギー総合開発機構（1987）によれば下位より、中新世の花崗岩、小花崗岩、鮮新世の穂の沢榴岩・真狩別ガラス榴岩、第四紀の東別岳層・留寿層・僧知安山地堆積層・真狩別層・羊蹄火山噴出物・段丘堆積物および変質堆積物からなる（第1図および第2図）。

一方、狩太田峠（国府谷・土居、1961）では花崗岩の上位の地層として真狩川層が形成され、本層は地質図幅調査帯は産出化石もなく地質時代は不明であったが岩相の類似点から黒松隠核準生層の地層と考えられていた。今回、本層から堆積化石の抽出に成功したのであり、あわせてその層序関係を考察する。

1. 花崗岩

本層は国府谷・土居（1961）のプロビライト熔岩と花崗岩の凝灰岩層に相当し、新エネルギー総合開発機構（1987）により再定義された。模式地は虻田郡ニセコ町小花井の南東1㎞のルベシベ川上流部である。岩相は変質安山岩、火山角閃岩、ディサイト質凝灰岩、軽石凝灰岩、砂岩泥岩互層および堆積岩凝灰岩層互層からなるが、新エネルギー総合開発機構（1987）は本層を「下位から変質安山岩、凝灰岩および砂岩泥岩互層からなる地層」とし、広域的に变安山地域の国富層に対比した。

本報告では岩相から本層を2つの部分に分ける。下層層は主に安山岩質凝灰岩の火山岩と安山岩質火山角閃岩を含む。ディサイト質凝灰岩の火山屑岩から成る堆積岩を含む堆積岩が多く、さらに岩相は火山灰質堆積岩が発達する。堆積層の厚さは十数cm程度である。凝灰岩堆積岩は主に赤褐色、緑灰色、灰白色など多くの変色を示す。
第1図 地質概略図
国府谷・土井（1961），斎藤ほか（1956）の5万分の1地質図幅から編図
★は本調査井（GSH-MK1）

Fig. 1 Simplified geologic map of the Makkari area at the foot of Mt. Yotei (compiled from SAITO et al., 1956 and KOHNOYA et al., 1961).

す安山岩の角礫からなる。礫径は2cm～10cm程度である。またこれらの角礫の中に珪藻泥岩のブロックがみられる。デイサイト質凝灰岩は変質が著しく詳細な組織は判別できないが、粘土化した凝灰質物の基質と石英粒子からなる。

上部層は主に軽石凝灰岩からなり、凝灰質な砂岩泥岩互層および礫岩凝灰岩互層が挟在する。軽石凝灰岩は白色～灰白色の数mm～数cmの軽石と淡緑色を呈する細粒の安山岩質火山岩片からなる。軻石は発泡良好で、引き延ばされた形態をとる。軻石凝灰岩は塊状構造で、明瞭な堆積構造をもたない。砂岩泥岩互層の砂岩は淡緑色を呈する。互層の層比は5:1程度で砂岩優勢である。砂岩は厚層理を呈し、内部は一般に塊状構造であるが、部分的に弱くラミナ構造が見られる場合もある。砂岩の構成礫物は石英、斜長石、黑雲母、電気石とその他岩片（古期堆積岩片および花崗岩質岩片）で構成される石英長石質砂岩である。これら互層中に軽石凝灰岩が夹在する場合もある。また、本層は玄武岩・流紋岩の岩脈にかかわる。

第1表 硅藻化石リスト

<table>
<thead>
<tr>
<th>Species</th>
<th>M-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinocyclus ingens Ratt.</td>
<td>4</td>
</tr>
<tr>
<td>Actinoptychus senarius (Ehr.)Ehr.</td>
<td>3</td>
</tr>
<tr>
<td>Coscinodiscus marginatus Ehr.</td>
<td>23</td>
</tr>
<tr>
<td>Denticulopsis hustedtii (Simonsen et Kanaya)Simonsen</td>
<td>3</td>
</tr>
<tr>
<td>D. hyalina (Schrader)Simonsen</td>
<td>1</td>
</tr>
<tr>
<td>D. praedimorpha Barron et Akiba</td>
<td>108</td>
</tr>
<tr>
<td>Ikebea tenuis (Brun) Akiba</td>
<td>2</td>
</tr>
<tr>
<td>Rhizosolenia spp.</td>
<td>8</td>
</tr>
<tr>
<td>Stephanopyxis sp.</td>
<td>1</td>
</tr>
<tr>
<td>Syndra miocenica Schrader</td>
<td>2</td>
</tr>
<tr>
<td>T. nitzschioides</td>
<td>24</td>
</tr>
<tr>
<td>(Grum.) H. et M. Peragallo</td>
<td></td>
</tr>
<tr>
<td>Thalassiosira eccentrica (Ehr.) Cl.</td>
<td>1</td>
</tr>
<tr>
<td>Thalassiothrix frauenfeldii Grun.</td>
<td>2</td>
</tr>
<tr>
<td>T. longissima Cl. et Grun.</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
</tr>
</tbody>
</table>

2. 真狩川層
命名は国府谷・土居（1961）の狩太図幅による。
<table>
<thead>
<tr>
<th>代</th>
<th>地層名</th>
<th>模式柱状図</th>
<th>岩質</th>
</tr>
</thead>
<tbody>
<tr>
<td>第</td>
<td>完新世</td>
<td>地すべり、扇状地および堆積物</td>
<td>羊蹄火山：安山岩溶岩、火山噴出物</td>
</tr>
<tr>
<td>更</td>
<td>二世</td>
<td>羊蹄火山</td>
<td>真狩別層：ローム層</td>
</tr>
<tr>
<td>四</td>
<td>新世</td>
<td>二世の堆積物</td>
<td>留寿都層</td>
</tr>
<tr>
<td>世</td>
<td>山</td>
<td>二世の堆積物</td>
<td>: 島嶺石末出物</td>
</tr>
<tr>
<td>總</td>
<td>群</td>
<td>小別岳溶岩</td>
<td>: 安山岩溶岩</td>
</tr>
<tr>
<td>新</td>
<td>鮮新世</td>
<td>槀の沢溶岩</td>
<td>真狩別層溶岩</td>
</tr>
<tr>
<td>第</td>
<td>中</td>
<td>小花井層</td>
<td>安山岩質凝灰質角礫岩、火山凝灰岩</td>
</tr>
<tr>
<td>三</td>
<td>新</td>
<td>花園</td>
<td>凝灰質砂岩</td>
</tr>
<tr>
<td>紀</td>
<td>世</td>
<td>狩川</td>
<td>凝灰岩</td>
</tr>
<tr>
<td>先新第三紀</td>
<td>基盤岩類</td>
<td>花崗閃綠岩、泥岩</td>
<td></td>
</tr>
</tbody>
</table>

第2図 模式柱状図
新エネルギー総合開発機構（1987）に一部追加
Fig. 2 Stratigraphic sequence of the Makkari district (compiled from NEDO, 1987).

模式地はニセコ町東南方约1.2 kmの真狩川の河床1ヶ所だけ露出する（第1図）。岩相は暗灰色を呈する塊状凝灰質泥岩からなりMakihana chilitaniをふくむ。本層上位には不整合で留寿都層が見られる。今回、第1図に示す層から珪藻化石が検出された（第1表）。珪藻化石はDenticulopsis praedimorphiaを伴うので、本層は中新世初期に相当することが明らかになった。

3. 小花井層
本層は斎藤ほか（1956）の真狩知来別集塊岩層に相当するが、新エネルギー総合開発機構（1987）は狩太郎等の新内山集塊岩（真狩知来別集塊岩層の西部延長部）の一部を含む定義で、小花井層と命名した。本報告でもこの層層名を踏襲する。模式地は虻田郡ニセコ町真狩川支流の向来別川中落合である。分布は模式地を中心に河川延に環状にみられる。岩相は凝灰質火山凝灰岩と安山岩質火山角礫岩の二つの岩相に大別される。本層は従来、鮮新統と考えられていたが、新エネルギー総合開発機構（1987）が留寿石安山岩溶岩から7.6±0.6 MaのK-Ar年代を得ていることから後期中新世まで古くなる可能性が出てきた。模式地にみられる小花井層は軽石質火山岩層凝灰岩（下部層）と安山岩質火山角礫岩（上部層）からなる、境界面の構造はN70°W、10°Sであり、岩相の分布とは調和的である。

下部層は軽石質火山凝灰岩は黄色〜黄灰色を呈し発泡不良の径0.5〜1.0 cmの軽石や破砕した安山岩片からなる。軽石に囲まれた種々のオードーの角礫がみられる。角礫の種類は多様で安山岩片が多いが、まれに1m大の泥岩のブロックがみられる、内部構造は塊状無構造で、微細化、成層構造は見られない。

上部層の安山岩質火山角礫岩は径10〜30 cmの灰色を呈する軽石安山岩の角礫からなり、基質に少量の同質破砕物を含む。稀に塊状軽石安山岩凝灰岩が見出される。
4. 栖の沢溶岩・真狩別太溶岩
命名は狩太図幅の国府谷・土居 (1961) による。栖の沢溶岩は主に民布岳北麓を形成し、安山岩溶岩からなる。真狩別太溶岩は真狩村西方行政区画境界線の 500.9 m の山を形成し、角閃石含有デイサイト溶岩からなる。岩溶岩からはすでにそれぞれ 3.2±0.4 Ma, 3.5±0.2 Ma の K-Ar 年代が得られており鮮新世である（新エネルギー総合開発機構, 1987）.

5. 尻別岳溶岩
本溶岩は、尻別岳を構成する含石英角閃石普通輝石安山岩であり、留壽都層に覆われる。尻別岳溶岩の一部は真狩村東部にいくつかの丘とし（舘山など）みられることから、かなりの広がりを持って流れた後、剥落され現在に至ったと考えられている（宮藤ほか, 1956）。

6. 留壽都層
命名は長尾ほか (1933) による。模式地は羊蹄山南麓の真狩高原一部であり、主として尻別川流域の山地低地部に分布する、厚さ約 20～30 m である。岩相は安山岩岩片・帯模白色の輝石と火山灰からなる淡沢色の火成岩堆積物である。輝石は一般に径数 mm～数 cm オーダーで、基質に量多の石英と斜長石・角閃石・雲母などの鉱物を含む。

7. 偕知安金地堆積層
命名は岩内図幅 (広川ほか, 1955) による。模式地は安田郡偕知安里町道 5 号線付近で、分布は偕知安里町東部の底 200 m～210 m の段丘地形に相当する。真狩村周辺では地表での露出は確認されていない。羊蹄山南麓、ニセコ谷光の土砂採取場に露露出がみられる。岩相は細粒大の輝石を含む石英灰の砂及び粘土質シルト層で構成される。砂層はチャネル構造を示し、内部には斜交ラミナが見られる。シルト中には炭化木片が含まれている。チャネル底付近には黑色安山岩のエメルが密集している場合がある。堆積物から留壽都層の二次堆積物と考えられている（新エネルギー総合開発機構, 1987）。

8. 真狩別層および段丘堆積層
命名は長尾ほか (1933) による。模式地は羊蹄山南麓の真狩高原一部であり、本層の厚さ約 10～20 m と推定され、下層から褐色ローム、明礬色に下段輝石及び褐色ロームの順に累積し、広域的には有珠火山灰 c 層に対比される。段丘堆積物は固結度の低い

9. 羊蹄火山噴出物
羊蹄山は断面を成層火山であり、鍾状富士と呼ばれている。羊蹄火山噴出物は 7 期の噴出物と 6 か所の寄生火山噴出物に分類され、留壽都層の上にのる。羊蹄山周縁には、多数の湧水がみられる。

II 調査地域の崩壊地質
当所の調査ポーリング (GSH-MK I) は真狩村市街地より西方へ約 2 km の地点である (第 1 図)（北緯 42'48.70", 東経 140'46.82", 層標 213 m）。掘削場所は真狩川と知別河川に挟まれた台地状の細地である。

1. 真狩村調査ポーリングの崩壊地質
掘削により得られたカッティング及びコアにより岩相を記載し、色調、岩質、岩相から大きく 5 つのユニットに区分した（第 3 図）。浅部から深部にかけてユニット I ～ユニット V とする。さらに細分化も含めはプロセスを設定した。その上で、岩相上の特徴から地表地質との対比をおこった。以下、崩壊地質について述べる。

1.2 ユニット I (0～14 m)
固結度の低い礫・砂・粘土・火山灰灰からなり全体に淡緑色を呈する。礫は主に安山岩、凝灰岩からなる。岩相と構造物から考えて真狩別層に相当すると考えられる。

1.2 ユニット II (14～47 m)
1 cm 大の帯模白色の輝石と石英砂から構成される輝石質堆積物で、黑色安山岩岩片と木片を含む。構造物の量比・円滑・混在に類似な二つのサブユニットに分けられる。
Ⅱ a (14.0～34.6 m)
多数の石英砂を円滑した輝石からなる。混在は良好で石英砂の割合がサブユニット II b に比較して圧倒的に多い。
Ⅱ b (34.6～47.0 m)
大部分が多様な色調を示す輝石からなり、少量の石英砂をも含む。サブユニット II b は構造物から考えて留壽都層に相当する。サブユニット II a はサブユニット II b の二次堆積物であると考えられ、偕知安金地堆積層に相当するとと思われる。

1.3 ユニット III (47～293 m)
おもに、黄褐色の輝石と白色安山岩岩片を含む凝
灰角礫岩から構成され、淡緑色の軽石凝灰岩を夹在する。岩相から六つのサブユニットに分けられる。
Ⅲ a (47~83.5 m)
石英安山岩と黄褐色の軽石からなる凝灰角礫岩である。石英安山岩角礫は流理構造を呈し斜長石、黒雲母、輝石がみられる、珪化岩片が稀にみられる。
Ⅲ b (83.5~102.5 m)
淡緑色の軽石凝灰岩からなり、時に安山岩の角礫を含むことがある、軽石は発泡良好である。斜長石の破片、酸性深成岩岩片をふくむ。
Ⅲ c (102.5~148.5 m)
石英安山岩と緑色灰凝灰岩と黄褐色軽石から構成される凝灰角礫岩。石英安山岩は流理構造を呈し斜長石、黒雲母、輝石がみられる、珪化した火山岩片を含む。コア (116.40 m~117.40 m) は角礫状を呈する石英安山岩の火山凝灰岩である。
Ⅲ d (148.5~166 m)
黒色安山岩片を含む淡緑~灰白色を呈する軽石凝灰岩である。軽石は発泡良好で、輝石・斜長石の破片がみられる。角礫にはほとんど玄武岩質安山岩、石英安山岩がふくまれる。
Ⅲ e (166~227 m)
暗灰色~黄褐色を呈する軽石と石英安山岩・安山岩の岩片を含む凝灰角礫岩である。安山岩は発泡しており、斜長石、石英輝石がみられる。コア (221.76 m~223.05 m) は両輝石安山岩の角礫と黄褐色軽石凝灰岩からなる火山凝灰岩である。
Ⅲ f (227~293 m)
暗緑色を呈する安山岩と軽石からなる凝灰角礫岩である。基底部付近で黄褐色軽石層を夹在する。軽石には酸性深成岩、珪化岩がみられる。軽石中には斜長石、輝石がみられる。
以上のように、本ユニットは石英安山岩・安山岩の角礫と同質の軽石質凝灰岩からなる凝灰角礫岩主体の地層である。このような岩相に比対されることは小花井層の下部層と考えられる。ただし、Ⅲ b, Ⅲ d の軽石凝灰岩は地表部で確認していない。

1.4 ユニットⅣ (293~557 m)
本ユニット南部側を構成する、3つのサブユニットに分けられる。凝灰岩は軽石を多量に含む軽石凝灰岩で、全体に均質な岩相を示す。サブユニットⅣ b に類似した炭酸塩化作用が著しい。
Ⅳ a (293~424.5 m)
淡緑色～灰緑色の軽石凝灰岩から構成される。コア (317.13 m~318.23 m) は数 cm~5 cm 大のパッチ状の軽石と少量で数 mm オーダーの凝灰岩・玄武岩質の岩片を夹在する。

岩質安山岩の破砕岩片の基質からなる、内部構造は塊状無構造であり堆積構造はみられない。
Ⅳ b (424.5~471.5 m)
灰白～白色までは灰色で、暗緑色を示す凝灰質細粒砂岩である。含まれる火山岩片は粘土質岩が生成しているため原岩は不明である。ユニット下部には石英粒子の量が増す。また基盤岩超発と思われる変形の著しい岩片もみられる。
Ⅳ c (471.5~557 m)
深度 471.5~483.9 m は厚さ約 12 m の円礫岩である。礫岩の礫塊は淡緑~濃緑色凝灰岩、凝灰質砂岩、安山岩、コロフォーム構造を持つ珪質岩、酸性深成岩である。
深度 483.9~557 m は細粒～粗粒砂岩である。上部 (483.9~500 m) は多様な岩片からなる淡緑色細粒砂岩と細粒凝灰岩の層理を呈す。基盤砂岩が夹在している。細粒砂岩は石英に富み、特徴的な白色凝灰岩を夾在する (506~509 m)。コア (498.00 m 499.55 m) は石英長石質の塊状砂岩相を示し、生物繊維が認められる。主構成粒子は石英、斜長石、カリ長石、黒雲母、電気石がみられる。基底部には礫を含む粗粒砂岩からなる。

以上のように本ユニットは淡緑色凝灰岩、灰白色軽石凝灰岩と石英長石質の砕屑岩から構成される事から花崗岩上部層に相当すると考えられる。

1.5 ユニットⅤ (557~1012 m)
北に変質安山岩、同質凝灰岩礫岩、同質凝灰岩から構成される。珪化変質は全体に及んでおり本ユニットの特徴となっている。本ユニットの上部 (557.5 m~842 m) では暗褐色の粘土化が著しく、その度合は深度によって微妙で一定しない。色調は 557 m~684 m までは全体に暗褐色から灰白色を呈するが、それ以深は緑色（暗緑色、濃緑色、緑灰色）を呈する。下位から上位に変質安山岩→凝灰角礫岩（→凝灰岩）の組成を成ると考えられる 5つのサブユニットに区分する。
Ⅴ a (557~684 m)
下位から変質安山岩、凝灰角礫岩からなる。凝灰角礫岩中には約 5 m の変質安山岩が夹在する。全体には石英長石を呈し、ゼラチン化が著しく炭酸塩化物の脈が生じている。空間が多数に石英、緑泥石などが埋めている杏仁状構造がみられる。凝灰角礫岩は安山岩の角礫と砂質凝灰岩（主要構成物は石英、斜長石、黒雲母からなる）の基質で構成される。また、火山岩片中にパリオール構造がみられる場合がある。コア (583.32 m~583.82 m) は角礫状
を呈する安山岩で輝石は緑泥石に置換されている。
\(V_b \) (684～732 m)

下位は変質安山岩、凝灰角礫岩からなる。変質安山岩は珪化変質が著しい。凝灰角礫岩は珪化した安山岩や枕状溶岩の角礫からなる。コア (706.66 m ～707.39 m) は節理が発達した安山岩である。

\(V_c \) (732～846 m)

下位は変質安山岩、凝灰角礫岩からなる。緑れん石が全体に生じている。コア (812.66 m ～812.96 m) は角礫粘土化し、炭酸塩化が著しい。石英粒子と凝灰質岩片からなる石英安山岩質凝灰岩である。

\(V_d \) (846～891.4 m)

下位は変質安山岩・凝灰角礫岩互層、凝灰岩からなる。

\(V_e \) (891.4～992 m)

下位は玄武岩安山岩と変質安山岩の“互層”，凝灰角礫岩からなる。玄武岩安山岩と変質安山岩の“互層”中には凝灰岩 (7 m) が夹在する。玄武岩安山岩は暗緑色を呈し、斜長石の斑晶がみられる。

\(V_f \) (992〜1012 m+)

凝灰岩、凝灰角礫岩からなる (20 m+)。構成酸化物粒子は石英、斜長石、輝石、黒雲母である。凝灰角礫岩の礫は変質安山岩である。

以上の通り、本ユニットは層序的にみて岩相の特徴からみても花崗岩下部層に相当すると考えられる。

2. 周辺域の坑井地質

真狩村管内での坑井資料は唯一であるが、周辺町村ではいくつかの坑井資料がある。以下では留寿都地域は大和5号井の坑井地質を、羊蹄山西麓地域はウィタカムイ井・大九開発井の坑井地質を例に上げる（北海道立地下資源調査所、1977）。

大和5号井は深度300 m までは気泡岩以及火山碎屑物から構成され、深度300 m以深（少なくとも深度1200 m まで）は基盤岩類と考えられている花崗岩類（～閃緑岩）からなる。

ウィタカムイ井は深度約50 m までは鉄鉱をふくむ火山灰岩からなり、深度50 mから深度329 mまでは泥岩を挟む火山灰屑物からなり、329 m以深 (深度500 m から) は安山岩および石英安山岩よりなる。

大九開発井は、表土の下から250 m までは泥岩をはさむ火山噴出物からなり、250 mから400 mは安山岩をふくむ火山碎屑物からなり、深度400 m以深（少なくとも深度442 m まで）は基盤岩と考えられる石英閃緑岩からなる。

3. 地表の層序区分と坑井地質との対比

真狩村の調査ポーリングの坑井地質を、岩相から5つの岩相ユニットに区分した。またそれぞれの岩相を記載し、地表地質と岩相にもとづく対比をおこ

第2表 対比表

<table>
<thead>
<tr>
<th>時代</th>
<th>地域</th>
<th>札幌西部地域 (大波)</th>
<th>札幌西部地域 (大波)</th>
<th>札幌西部地域 (大波)</th>
<th>札幌西部地域 (大波)</th>
</tr>
</thead>
<tbody>
<tr>
<td>第四紀</td>
<td>新世</td>
<td>東室山溶岩 屋良村民岩</td>
<td>新世安山岩類</td>
<td>新世安山岩類</td>
<td>新世安山岩類</td>
</tr>
<tr>
<td></td>
<td></td>
<td>留寿都</td>
<td>留寿都</td>
<td>留寿都</td>
<td>留寿都</td>
</tr>
<tr>
<td></td>
<td></td>
<td>留寿都層</td>
<td>留寿都層</td>
<td>留寿都層</td>
<td>留寿都層</td>
</tr>
<tr>
<td>新世</td>
<td></td>
<td>北沢村層</td>
<td>北沢村層</td>
<td>北沢村層</td>
<td>北沢村層</td>
</tr>
<tr>
<td></td>
<td></td>
<td>花崗岩類</td>
<td>花崗岩類</td>
<td>花崗岩類</td>
<td>花崗岩類</td>
</tr>
<tr>
<td></td>
<td></td>
<td>花崗岩類</td>
<td>花崗岩類</td>
<td>花崗岩類</td>
<td>花崗岩類</td>
</tr>
<tr>
<td></td>
<td></td>
<td>花崗岩類</td>
<td>花崗岩類</td>
<td>花崗岩類</td>
<td>花崗岩類</td>
</tr>
</tbody>
</table>

なった。まとめた対比表を第2表にし、坑井的地質の積み重なりは地表地質の分布・層序とほぼ調和的である。

なお、花園層上部層に相当すると思われるサブユニットIVcは細粒砂岩から粗粒～円礫岩に至る上方粗粒化の傾向がみられる。それに対し、その上位のサブユニットIVbは全体に粒度の変化も少なく“均質”であるといえる。

中期中新世初期をしめす凝灰質塊状泥岩である真狩川層は坑井地質では認められない、小花井層の輝石安山岩質熔岩からK-Ar年代は後期中新世を示している（新エネルギーや総合開発機構、1987）ことから花園層は中期中新世と推定される。このことから、真狩川層は花園層相当もしくはその下位に当たる地層と推定される。

国府谷のほか（1961）は真狩川層を岩相から“黒松内統”に対比しが、むしろ“八雲統以前”の地層である可能性が高い。ただし、真狩川層そのものが現在のところ非常に限られた露出状態を示し、その分布についてはまだのところ全く不明であることから本論では指摘することとする。

Ⅲ 真狩地域の地下構造

真狩地域を含む羊蹄山周辺域については、新エネルギーや総合開発機構（1987）により重力異常図が示されている。また、松波・岡崎（未公表）により地殻探査が実施されている。ここでは先に述べた地質調査結果をこれらのデータと比較検討する。

真狩地域は、羊蹄山麓周辺のなかでも比較的大きさ重力異常域に位置している（第4図）。第5図に測線A-Bの重力断面を示す。重力プロファイルは真狩高原の中心ではゆるく平坦に近いが、その周辺で重力勾配が急となり、全体としてやや傾斜の形状を示す。測線C-Dの重力プロファイル（第6図）も同様であるが、最深重力域は羊蹄山南麓に認められる。

重力異常は地下の物質の密度分布に対応し、物質相互に密度差がある場合、その境界面の形状が地表の等重力線図で表現される。特に本地域ではいわゆ
これらの地層を本坑井地質と対比すると以下のようになる。上位 a 層は比較的高比抵抗層である。坑井地質に相当するのはユニット I ～ユニット II であり、留寿都層などおもに軽石質火山碎屑物から構成される地層に相当すると考えられる。b 層は坑井には出現しないが、a 層に覆われる関係と地質の分布からみて小花井層に相当するとと思われる。c 層は比抵抗値が異なることからその岩相変化と推定される。c 層はユニット III ～ユニット IV に相当することから、花岡層上部層から小花井層下部層の軽石質凝灰角礫岩・凝灰岩・碎屑岩類から構成されていると考えられる。d 層はユニット V に相当し花岡層下部層の変質の著しい安山岩・凝灰角礫岩などから構成されると考えられる。

留寿都村、千疎山西麓そして今回掘削された真狩村での坑井地質と電気探査のデータを総合すると以下のようになる。留寿都村の留寿都 5 号井では深度 100 m（標高 300 m）で、千疎山西麓の大三開発井においては 400 m（標高 -175 m）で基盤岩と考えられる酸性深成岩に逢着しているのに対して掘削地点では深度 1012 m（標高約 -800 m）時点でまだ基盤岩類には逢っていない。このことから“基盤岩類の落ち込み”は少なくとも留寿都層と比較して 1000 m 以上、千疎山西側と比較して 600 m 以上に達すると推定される。なお、留寿都の坑井地質には真狩村調査井（GSH-MK1）のユニット IV、V に対応する地質は存在しない。

第 5 図 A-B 断面図
坑井名は A から B にヴィラカムイ井、大三開発井、本調査井、大和 5 号井
Fig.5 Bouguer anomaly and resistivity structure and geological columnar section (A-B) of wells in the Makkari district.

重力異常図をみて明らかのように、千疎山は顕著な高重力異常を示している。千疎山は第四系の火山体であることから、このような重力異常とそれから推定される地下構造は新第三系の地下構造とは別質なものであることが示唆される。
IV まとめ

① 真狩村の杭井地質は岩相から5つのユニットに分けられ、各ユニットはそれぞれ下位より花園層（上部・下部）、小花井層（下部）、留寿都層、真狩別層に岩相対比されると考えられる。

② 電気探査による比抵抗値の差から本地域はa層、b層、c層、d層の4層に分けられる。掘削地点（GSH-MK1）近傍の電気探査結果 MK4をコント

ロールポイントとするとa層は留寿都層などの透水性の良好な地層に対応する。b層は本井に分布しない。c層は小花井層・花園層上部層に対応し、両層の境界は検出できない。d層は花園層下部層に対応すると考えられる。

③ 留寿都地帯は基盤の花園明礦岩の上部に更新世の溶岩（涌別岳溶岩）が直接覆っていることが坑井資料からわからっている。このことから中新統の大部分が剝離されたと考えられる。

④ 重力・電気探査から推定された真狩村の基盤岩類の落ち込みは、杭井地質の点からも示唆される。

あとがき

重力異常と電気探査から推定された地下地質構造を検証する形で実施した地熱探査は、真狩村管区内で初めての深部ポーリング調査となった。

羊蹄山周辺域の地下構造は、留寿都および羊蹄山西麓の例に見るように比較的浅部において基盤岩類がとらえられてきたことから、「地熱資源を賦存する堆積盆地」として、これまで注目されることはない。

本調査の結果、当初推定された基盤岩類の大きな落ち込みが確認され地下構造がより明瞭になったこととは、今後の地域の資源開発を支える上で重要な資料となる。なお、今回のポーリング調査において昇降対象としたユニットVの温泉資源に関する諸データについては別途報告する予定である。
文献

広川 治・村山正郎（1955）：5万分の1地質図幅「岩内」及び同説明書、地質調査所、26 p．
北海道立地下資源調査所（1977）：北海道の地熱・温泉資源（II）西北海道北部、地下資源調査所調査研究報告、4、198 p．
国府谷盛明・土井繁雄（1961）：5万分の1地質図幅「狩犬」及び同説明書、北海道立地下資源調査所、33 p．
松波武雄・岡崎紀俊（1989）：真狩村・京極町の温泉資源について（未公表資料）、5 p．

長尾 巧・佐々保雄（1933）：北海道西南部の新生代層と最近の地史（I）、地質学雑誌、40、555－577．
斎藤昌之・藤原哲夫・石山昭三・松井公平（1956）：5万分の1地質図幅「留寿都」及び同説明書、北海道開発庁、33 p．
新エネルギー総合開発機構（1987）：昭和61年度全国地熱資源総合調査（第2次）火山性熱水対流系地域タイプ①（ニセ科地域）ニセ科地域火山地質図及ニセ科地域地熱地質図説明書、77 p．
和田信彦・八幡正弘・大鳥弘光・横山英二・鈴木豊重（1988）：西胆振地域の地質と地熱資源、地下資源調査所調査研究報告、19、93 p．
The Cenozoic system and its geotectonic feature at the southern foot of Mt. Yotei, southwestern Hokkaido

Sunao Ohtsu

Abstract

Neogene sedimentary rocks and volcanic rocks around Shiribeshi area in southwestern Hokkaido have been subjected to a stratigraphic study. However, the Neogene System around foot of Mt. Yotei has not been investigated in detail, because of a Quaternary System overlain by mainly volcanic products. And so, the Neogene System has been inferred by a gravity structure.

Electric resistivity structure and drilling in this area has revealed the following.
1) The Neogene System is at least 1000 meters thick and its basement complex cannot be observed. The well is lithologically divided in the following five units in ascending order, that is, the unit \(V \) of tuff breccia, volcanic breccia and andesite lava with alteration, the unit \(IV \) of pumice tuff and alternating beds of sandstone and siltstone, unit \(III \) of tuff breccia, unit \(I \) - unit \(II \) of pumiceous ash and its sediment.

The Makkarigawa Formation (siltstone facies) contain a diatom assemblage of the *Denticulopsis praedimorpha* Zone (12.90-13.50 Ma) of Kojima (1985).

2) An electric resistivity structure shows four distinct resistivity formations (the a - d formation) and the structure around the well is divisible into three formation without the b formation. The boundary of resistivity formations and lithological units of the well agree reasonably.

3) The basement complex appears at comparatively shallow depths in other geothermal wells around the study area.

A basin structure mainly formed by the Neogene System around its basement complex has been identified through stratigraphy, electric resistivity and gravity structure.