秋寒き小愛「きたほなみ」生育管理ツール 利用の手引き

M5	P 2598	18-1	11 - A b - A -	12 H 4 21 H 4	= 2 ¹	中 の は の に の の の の の の の の の の の の の	した金印を表示 後回して中元回	irs 11- 現-	· 唐· · · · · · · · · · · · · · · · · ·	te r-Julit tia	11 1 μλ	10 BK	27 d	9 52	Repris	MS NS	P3540 - 11 - A' A' ℓ II - I ⊡ - I ∰ - A - I ∰	*****	en Banala en Banala	10月1日日 - 10月1日 10月1日日 - 10月1日 10月1日 - 10月1日 10月11日 - 10月11日 10月11日 - 10月11日 10月11日 - 10月111日 10月11日 - 10月111日 10月1111 - 10月11111 10月11111111 10月111111111111111	51525	白いますープルとして	100 B. 8	1	N. AN	17 A
		2854			1	200			De -	2914			NZ		2117	W-E /4	24541		12.0		De -	2514			- 50	NZ.
W01			fe												*	T1 09	A									
B	0.	D	E	E	GH	IJ	К.	L	M 2	0	P	0	R	18		A B	0	D	E	F	0	н	1	JK	L	M
1212.92	は料算シー	N meta	45("makury	o to JN" Deten	minetion Aesis	t Sinulato	x)								1	望素住把/	Eab-Fo-N NOAS(Natroge	Determination	asist Simulator)							
		0 22	■複葉の算	di.											4	-	a. 19.50.18							1		
				1							_				0	-	王座美福	30			空肉柜把設計					
		地板		th d	1518-3	28	千粒重	主尊率	目標越冬前茎飲	有効機算気温	越尽精	必要情種量	必要發種量		7		92/30(8)	105		能肥量白釉算出	-	施肥量)	自由設計	1 18		(I) 平平(1)
		1.00.00		1			(2)	(%)	(/\$/n ²)	(°C)	常新	(12/m ⁵)	(kg/10a)		8	主星	相変量(kg/10a)	500	信草	租民重要大	タンパク重視	12-01	V=1/2			
				干年雄	9月	20 H	40	90	900	541	5.3	185	7		9	5862275	起生期茎数(本/m ³)	1000	1000	1000	1000	1000	1000			道内
演行	7	道亮	速度悬松	平年鍾	9月	58	40	90	900	797	7.2	89	3	3 4	.10	-	起生期	6.0	6	8	8	6	6		起生期	62.9
			干年値	平年値	рД	10 8	40	90	900	706	6.8	107	- 4	3	11	22章 16把梁	动形制	00	0	4	3	8	6	23元初	63.6	
	-			1.47.88										-	12	(kg/10a)	止葉朝	30	4	2	0	0	0	4	止黨期	65.0
						10.00	40	-90	900(i##)						13	-	國花期	0.0	0.	0	0	0	0		菌花期	59.3
									1000(3840)						14											
															15			実行		美行	美行					
		① 超示	用茎数の算	æ											10	-	40				E (5.848			-		
										-					17	-	項目	美加	62.5	相关规则大	シンパジ重視	<u> </u>	0-12	-		
		地域		地点	播種 3	定日	千积重	出産市	福建皇	有効種解気。當	結子的	相条前茎放	起主期基款		18		25 王 所置 WY010 里(1g) 104/	6.1	6.4	22	80	80	2.4	-		
			-	Lease 1	0.000	000245	(¢)	(%)	(kg/10a)	(°C)	MAI	(本/m)	(本/㎡)		19	間違守書	土澤由平10(kg/10g)	30	3.0	20	20	30	30			
				干年值	9 月	15 8	40	90	7	657	6.4	1374	148	3	21	供給特性	タンパク基本値(%)	8.85						-		
実行	9	道央	岩見沢	干年健	9月	78	40	90	7	802	7.2	2014	207	9	22											
				平年編	9月	26 8	40	90	7	481	4.7	597	77	3 4	23		項目	実通	標準	相受重要大	タンパク重視	1-1	1-12			
-				-			_	1						1	24		タンパク(%)	105	108	11.2	105	11.1	108			
						標準値	40	.90							25	計算結果	或熱期窒素吸収量(kg/10a)	109	115	140	121	14.0	128			
															26		便数(本/m ⁹)	612	620	084	656	681	658	4		
															27	L	相责量(kg/10a)	500	514	592	555	596	566	4		
			使用方法												28					1.000	1	1.200	-			
			必要播種量	わ算出											29			保存		保存	保存	保存	9847			
				1. 地域、相互	部入のアメダン	「地点を」	けて選択し	ます。							30	1										
				2. 播種予定	日をタラで通	例します。	-								31	4011-12-12										
10.00	War ID	THEND	WANGAME	3、十利夏を	人力します。	テフォル	- C40g. 36	抑し置った	こ方が構成は良くなりま	(₄)				-		paciet 13/2	ATTRACTOR AND AND ADDRESS	ON THE OWNER WAS IN	March Street Street Au	SAME AND DESCRIPTION	al rest and the rest of the rest					

北海道立総合研究機構 農業研究本部 中央農業試験場・上川農業試験場

早見表

もくじ

Ⅰ 秋まき小麦「きたほなみ」生育管理ツールの特徴 ・・・ 4

11	播種量計算ツ	-JV makiDAS		5
----	--------	-------------	--	---

Ⅱ-1 機能		5
Ⅱ −2 シー	- の構成	5
Ⅱ-3 操作7	方法	6
I −3−1	ファイルの開閉	6
I −3−2	地点の登録、越冬前積算気温の	
	算出	7

Ⅲ 窒素施肥シミュレートツール NDAS ··· 11

Ⅲ—1	機能		11
Ⅲ—2	各部の	なまえとはたらき	12
Π−2	- 1	シートの構成	12
Π−2	-2	各シートの概要と施肥量自動	12
		算出の流れ	
(1)	シミュ	レーターシート	12
(2)	施肥量	自動算出の流れ	13
(3)	生産実	績保存リストシート	14
Ш—З	操作方	法	15
Ш—З	- 1	ファイルの開閉	16
Ш−з	-2	施肥窒素利用率の設定	16

II - 3 - 3	必要播種量、越冬前茎数の算出	8							
(1)必要播種量の算出									
(2)越冬前茎数の算出									
I −3−4	結果の保存	9							
I −3−5	登録地点、越冬前積算気温の削除	9							
II - 3 - 6	結果の保存リストからの削除	10							

Ⅲ-3-3 窒素施肥設計	16
(1)過去の生産実績を用いた圃場の窒素	16
供給特性の推定	
(2)当年の窒素施肥設計	17
1)施肥量自動算出	17
標準	17
粗麦重最大のタンパク重視	18
2)施肥量自由設計	18
Ⅲ-3-4 結果の保存	19
(1)過去の生産実績の保存	19
(2)当年の窒素施肥設計の保存	20
Ⅲ-3-5 保存した過去の生産実績を引用	21
した施肥設計	
(1)複数年の過去の生産実績を用いる	21

Ⅳ − 1	IV	止葉期生育診断ツール T-NDAS	•••	23
Ⅳ — 1	機能		23	
Ⅳ −2	シート	~の構成	23	
Ⅳ -3	操作力	方法	24	
Ⅳ — 3	- 1	ファイルの開閉	24	
Ⅳ — 3	-2	窒素吸収量と最適追肥量の算出	24	
Ⅳ — 3	-3	結果の保存	25	
Ⅳ — 3	-4	結果の保存リストからの削除	25	

V 参考資料 ··· 26

秋まき小麦「きたほなみ」生育管理ツールの特徴

秋まき小麦「きたほなみ」は収量性が高く、子実品質も優れた品種ですが、以前の主流品種「ホクシン」に比べ起生期以降の生育が旺盛となりやすい性質を持ちます。茎数の過剰は倒伏や歩留まりの低下 につながるため、高品質安定生産には「きたほなみ」の生育コントロールが必要です。

1

生育をコントロールするには、基肥窒素量、播種時期、播種量を通じて越冬前の適切な生育量を確保 すること、および起生期以降の窒素追肥で茎数を適切に管理することが重要です。

「きたほなみ」生育管理ツールは、「きたほなみ」の播種から収穫までの全期間をカバーして安定生産を支援するためのツールです。本ツールは「播種量計算ツール makiDAS(マキダス)」「窒素施肥シミュレートツール MDAS(エヌダス)」「止葉期生育診断ツール T-NDAS(ティー・エヌダス)」の3つのサブツールで構成されています。DASは「Determination Assist Simulator (決定支援シミュレーター)」の頭文字です。各サブツールは使用時期および適用可能な地域・土壌が異なり、目的に応じて使います。

本ツールは Excel のマクロ機能を使います。セキュリティをマクロが有効となるレベルに下げること で、本ツール以外の Excel ファイルを開いたときに、ウィルス感染等の問題が起こる可能性があります。 本ツール使用時以外はマクロセキュリティレベルを上げるなど、セキュリティ対策を行ってください。

		秋まき	小麦「きたほなみ」生育管	管理ツール				
		播種量計算ツール	窒素施肥シミュレート ツール	止葉期生育診断ツール				
		makiDAS	NDAS	T-NDAS				
		(マキダス)	(エヌダス)	(ティー・エヌダス)				
動作搢培		E	xcel (2007, 2010 は確認済	み)				
到 IF	场场	Visual B	crosoft 社)					
日的		適正な越冬前生育の	子実タンパクの適正化	 子宝々、パクの演正化				
043		確保	+収量の確保					
庙田	内容	播種日ごとの播種量を	起生期以降の窒素追肥	止葉期以降の窒素追肥を				
这几	内谷	計画	を計画	計画				
		播種予定日と使用種子	生育量の予測に基づい	止葉期生育量と目標収量				
		から、目標越冬前茎数	て、圃場の特性に合った	から、子実タンパク適正化				
		の確保に必要な播種量	起生期以降の最適施肥	のための最適追肥量がわ				
詳細		がわかる	量がわかる	かる				
		播種日と播種量から、	自動予測を参考にした	(ハクムらにトス予測のずれ				
		越冬前茎数・起生期茎	最適施肥量の決定を					
		数がわかる	支援					
	播種期							
対	越冬前	\checkmark						
象	起生期							
時	幼形期							
期	止葉期							
	成熟期		\checkmark					
適用	地域	道央、道北	全地域	道央道東				
適用	土壌	全土壌	全土壌	火山性土 全土壤				

|| 播種量計算ツール makiDAS (マキダス)

II-1 機能

播種量計算ツール makiDAS("makuryo to jiki" Determination Assist Simulator)は、道央・道 北地域の全土壌に適用でき、目標とする越冬前茎数の確保に必要な播種量を播種日ごとに計算すること ができます。越冬前の茎数・生育量を適切に確保することが「きたほなみ」安定生産の第一歩となりま す。makiDASには、播種日と播種量を入力すると、越冬前茎数および起生期茎数を推定する機能もあり ます。

||-2 シートの構成

*makiDAS*は4つのシートで構成されています。このうち、メインとなるのは「播種量算出」シートで、 地域や播種日などの入力と必要播種量や越冬前茎数の出力を行います。「日平均気温」シートは地点登 録に用い、「越冬前積算気温」シートに地点別の越冬前積算気温がリスト化されます。「結果保存リスト」 シートは播種量算出シートの出力値を保存できます。

シート名	内容
播種量算出	条件入力、必要播種量・越冬前茎数等の出力
日平均気温	地点の登録、地点別日平均気温入力
越冬前積算気温	地点別越冬前積算気温の出力
結果保存リスト	必要播種量・越冬前茎数等の結果の保存

Ⅱ-3 操作方法

まず**地点の登録**を行い、計算に必要な気温データを準備します(デフォルトでいくつかの地点が登録 されています)。次に登録したデータを用いて、**必要播種量や越冬前茎数を算出**します。必要に応じ、 結果を保存します。

||-3-1 ファイルの開閉

makiDASはExcelのマクロ機能を使います。マクロが有効となるセキュリティレベル(警告を表示してマクロを無効にするなど)に変更し、コンテンツを有効にしてください。

Excelのセキュリティレベルを下げることで、本ツール以外の Excel ファイルを開いたときに、 ウィルス感染等の問題が起こる可能性があります。本ツール使用時以外はマクロセキュリティレベ ルを上げるなど、セキュリティ対策を行ってください。

(1)ファイルの開示

- 1.「播種量計算ツール makiDAS」を開くと、播種量算出シート、ならびに前回ファイルを閉じた ときの内容の消去についての確認メッセージが表示されます。
- **2.** はいまたはいいえのボタンを押します。
 - ・はいの場合・・・赤で囲った部分 (「「」」(千粒重、出芽率、目標越冬前茎数) がデフォルト値 (標準値)に変更されます。また、青で囲った部分 (計算結果や越冬前茎数算出に用 いる播種量)の各値が空欄になります。

デフォルト値・・・千粒重:40g 出芽率:90% 目標越冬前茎数:道央900本/m²、道北1000本/m² ・いいえの場合・・・いずれの値も変更されません。

- (2) ファイルの終了
 - 1. ファイルの右上にある×をクリックします。
 - 保存する場合は、確認メッセージが表示されたら「保存」を押します。
 ※ファイル名の変更も可能です。
- **||-3-2 地点の登録、越冬前積算気温の算出**(日平均気温シート)

対象とする圃場近くの観測地点(アメダスやマメダス等)の日平均気温を登録することで、越冬 前積算気温が算出できます。播種前の予測には平年値を、越冬前茎数や起生期茎数の推定には平年 値または該当年の値を用います。アメダスデータは気象庁のHPから入手でき、単年の値に加えて 平年値もダウンロードできます。

1. 日平均気温シートを開き、地点とデータの種類を左詰めで入力します。

・デフォルトの登録例を参考に、セル4行目(上段)にはアメダス地点等、セル5行目(下段) には年次や平年値等のデータの種類を入力してください。 ※左側に空白の列があると登録できません。

- 地点を入力した同じ列に9月1日~11月30日の各日の平均気温を入力します。
 ※他の Excel ファイル等からコピーするときは必ず「値のみ」貼り付けてください。
- 3. 地点登録ボタンを押します。
- 4. 越冬前積算気温算出ボタンを押します。
- 5. 越冬前積算気温シートに地点、データの種類、日別の越冬前積算気温が表示されます。

	1	5 P32	99 - 1 III 241	- (1) - A	1.4	- 10 - 10	17. (F. 13)	Ita Milia (wRait-	19-1, 1 Dat	24.03	4月11日 1-7 単式 - 単式	加速して 1000 副版王 - 2000	ο. Π λ	HR BA	3.	21 11-1132 7-11-7	後来と 重訳・
0	P1 00		1.14	6			1.4			Witt			P3/4		1674	-	76,00	-
		0	0	0	E.	r	0	-	1	100		-r	64	6.1	0	0	(
-			~		- Ja	1					- D			14	.0			~
				11/1520	の有効種類	(の)豊(で)	がいを結え	6日平均筑	湿を操作日	0-511/158	2157							
	12			1	2	3	4	5	0	7	8	9	10	11	12			
		月	B	應庭島松	新强津	再织	便知安	石咒溶田	美明	岩見沢	長沼	旭川	富良野	名寄	士利	_	-	
				平年鐘	平年值	平年值	平年值	平年值	平年個	平年值	平年值	平年值	平年值	平年值	2012			
		9	1	873.6	883.4	731.6	833	785.3	881.8	918.3	913.4	810.6	792.2	728.1	965	_	_	
	2	9	2	854.3	804	714.3	8139	766.5	862.2	898.4	893.6	791.4	773.3	710	944.8	_		
	3	9		8352	044 8 p25 0	67968	795	747.9	842.7	878.7	0545	772.4	754.0	6921	821			
	- 2	0		797.4	0.02.0	6626	7576	711.2	0234	809.1	004.0	795	717.0	074.4	8735			
	6		6	778.8	708.2	645.8	739.5	603.3	785.4	8205	8161	716.6	659 7	639.0	8507			
	7	9	7	760.4	769.7	629.2	721.4	675.6	766.7	B01.5	797.2	698.4	681.8	622.6	829			
	8	9		742.2	751.4	6128	703.0	658.1	748.2	782.7	778.5	680.5	664.2	605.8	E09.3			
	.9	9		724.2	733.3	596.7	686	640.8	730	764.1	760	662.8	646.8	509.2	798			
	10	9	10	706.4	715.5	580.8	665.6	623.8	712	745.7	741.7	645.3	629.6	572.8	769.6			
	11	9	11	688.9	697.9	565.1	651.4	607	694.2	727.5	723.6	628.1	612.7	556.7	748.9	_		
	- 12	9	12	671.6	680,5	549.6	634.5	590.4	676.6	709.6	705.7	6111	596	540.8	729	_		
	13		13	654.5	663.3	534.3	617.6	574.1	659.2	691.9	688	594.3	579.5	525.1	708.4	_		
	- 14	9	14	637.6	646.3	519.2	601.3	558	642.1	674.4	670.6	577.8	563.2	509.7	601.3	_		
	- 10	3	10	620.8	629.5	004.0	000	0421	020.2	10/3	003.4	201.2	0472	494.0	603.3			
	10		10	5004	1012.0	400.0	000.0	5111	6000	623.1	610.6	529.6	515.0	470.0	4/22.0			
	10		10	520.4	580.4	460.0	607.6	405.0	575.7	105.4	600	61.6	500.4	450.1	603.2			
	19	9	.19	556.3	504.5	446.7	522.1	481	559.7	590	586.6	498.6	465.3	436	579.3			
	20	9	20	540.7	548.8	432.8	506.9	466.3	543.9	573.8	570.5	483.5	470.4	422	556.5	_		
	21	9	21	525.3	533.3	419.1	491.9	451.8	528.3	567.8	554.6	468.6	455.8	408.2	596.5			
	- 22	9	22	510.1	518	405.7	477.2	437.6	5129	542	538.9	453.9	441.4	394.7	519.6			
	23	9	23	495.1	503	392.5	462.7	423.6	497.8	528.5	523.4	439.5	427.2	381.4	502.9			
	- 24	9	24	480.4	488.2	379.5	448.4	409.8	482.9	511.2	508.1	425.3	413.3	368.4	486.4	_		
	25	9	- 25	465.9	473.6	366.7	434.3	396.2	468.2	4961	493.1	411 A	399.6	355.6	471.1	_		
	20		20	401.0	409.2	304.1	420.4	382.9	408.7	401.2	478.3	3977	389.1	943	4081			
	28		28	423.6	440	391.7	900 8	354.9	425.9	409.5	403.7	3042	372.0	318.6	493.5			
	29	9	29	409.9	417.2	3175	380.2	344.2	411.4	437.9	435.1	258	947	306.7	4107			
	30	9	30	396.4	403.6	306.7	367.2	331.7	397.6	423.9	421.1	345.2	334.4	295	593.9			
	31	10	1	383.1	390.2	294.1	354.4	319.4	384.4	4101	407.3	332.6	322	283.5	376.1			
	32	10	2	370	377	282.7	341 B	307.4	371.2	396.5	393.7	320.3	309.9	272.3	360.8			
	- 33	10	3	357.2	364	271.5	328.4	295.6	358.2	383.1	380.3	308.2	298	261.3	346.6			
	34	10	4	344.0	351.2	260.5	317.3	284	345.4	369.9	367.1	296.3	286.3	250.5	332.9			
	35	10	5	332.2	335.6	249.7	305.4	272.6	332.6	356.9	354.1	284.6	274.8	239.9	31.9	_		
	- 26	10	- 0	320	326.2	239.1		201.4	320.4	344.1	341.3	273.1	263.6	220.5	205.5	_		
_	37	10	7	306	31.4	228.7	282.2	250.4	306.2	. 331.5	328.7	201.8	252.6	219.3	192.6	_		
	6.473	1.1	R-41/2	1881 - 19 93	REPORT OF	2月1月1日(2月11日	1.50				24							

II-3-3 必要播種量、越冬前茎数の算出(播種量算出シート)

あらかじめ日平均気温シートに地点の登録を行い、日平均気温の入力と越冬前積算気温の計算を しておいてください。(\rightarrow 7p. || - 3 - 2)

- (1) **必要播種量の算出**(上段)
 - 1. 播種量算出シートを開き、地域を選択します。このとき2. で選択する地点の地域と一致す るようにします。
 - ※対象地域は「道央」が石狩、空知、胆振、後志、日高、「道北」が上川、留萌の各振興局管 内です。地域が2. で選択される地点と異なる場合、推定精度は低下します。
 - ・地域を変更すると、越冬前積算気温、越冬前葉齢、必要播種量(2項目)の各値が空欄にな り、目標越冬前茎数がデフォルト値(道央 900 本/m²、道北 1000 本/m²)に変更されます。
 - 地点(気温データ)を選択します。 ※播種前の予測には気象平年値を用いてくだ さい。
 - 3. 播種予定日、千粒重、出芽率、目標越冬 前茎数を入力します。目標越冬前茎数は 500~2000本/m²の範囲で入力してください。 ※目標越冬前茎数を地域・圃場に合わせて変 更することで、小麦生育が安定します。

4. 実行ボタンを押します。

5. 越冬前積算気温、越冬前葉齢、必要播種量(粒/m²、kg/10a)が表示されます。 ※必要播種量が11kg/10aを超える場合は、11kg/10aと表示されます。

(2) 越冬前茎数の算出(下段)

1. 地域を選択します。このとき2. で選択 する地点の地域と一致するようにします。

※地域が2. で選択される地点と異なる場 合、推定精度は低下します。

- 地点(気温データ)を選択します。算出 したい年または平年値を選択してください。
- 播種予定日、千粒重、出芽率、播種量を 入力します。
- 保存 ・播種量は3~11kg/10aの範囲で入力してください。

播種量算出 シー

- 4. 実行ボタンを押します。
- 5. 越冬前積算気温、越冬前葉齢、越冬前茎数、起生期茎数の推定値が表示されます。 ※起生期茎数は越冬状態が良好な場合の推定値です。

- **II-3-4 結果の保存**(播種量算出シート)
 - 1.保存するレーンの右側にある保存ボタンを押します。
 - ・保存するデータのレーンと同じ行にあるボタンを押してください。
 - ・すでに同一データを保存済みの場合は無効となります。
 - 2. 結果保存リストシートにデータが転記されます。
 - 3. 転記したデータの名称を入力します。後から入力することもできます。
 - ・結果保存リストシートの▼はオートフィルタで、目的の条件に合致したデータのみを表示させることができます。
 - ※ファイルを閉じた後も結果を残しておく場合は、終了時にファイルの保存を必ず行ってください。(→ 7p. II-3-1(2))
 - ※保存したデータを解析またはグラフ化など加工したい場合は、別の Excel ファイル等にデー タを移しかえてください。

- **||-3-5 登録地点、越冬前積算気温の削除**(日平均気温シート)
 - 1. 削除する地点・日平均気温データの3行目セル(通し番号)をクリックすると、セルが水色 になり、選択されます。

別セルをクリックし、再度**水色**セルをクリックすると無色に戻り、選択から外れます。 ・複数のセルの選択も可能です。

- 2. データ削除ボタンを押します。
- 選択した地点、日平均気温ならびに越冬 前積算気温(越冬前積算気温シート)の各 データが削除されます。

II-3-6 結果の保存リストからの削除(結果保存リストシート)

1. 削除するデータの A 列(通し番号)をクリックすると、セルが**黄色**になり、選択されます。 別セルをクリックし、再度**黄色**セルをクリックすると無色に戻り、選択から外れます。

・複数のセルの選択も可能です。

- 2. データ削除ボタンを押します。
- 3. 選択したデータが削除されます。

makiDASの留意点

- ○本ツールの精度は、道央、道北各地域の「きたほなみ」栽培指針の範囲(越冬前積算気温 520~640℃のとき播種量 100~140 粒/m²)、あるいはそれに近い場合は概ね確保されますが、以下の場合には低下します。
 - ・極端な早まきで播種量が多い場合(目安は越冬前積算気温 700°C以上でかつ播種量 255 粒/m²以上)
 - ・遅まきで播種量が少ない場合(目安は越冬前積算気温 350°C以下でかつ播種量 140 粒/m²以下)

Ⅲ 窒素施肥シミュレートツール NDAS (エヌダス)

Ⅲ-1 機能

窒素施肥シミュレートツール *NDAS* (Nitrogen Determination Assist Simulator) は、全道地域の全 土壌に適用できます。過去の収量などのデータ(生産実績)から畑のくせ(圃場の窒素供給特性)を推 定し、それらと栽培当年の起生期茎数を反映した窒素施肥設計を行うことができます。

圃場と起生期の生育量に合わせて窒素追肥量を加減することは、「きたほなみ」の生育を制御する上 で大変重要です。圃場の窒素供給特性を正確に知るには専門的な分析が必要でしたが、生産実績を用い て推定することが可能となりました。

圃場の窒素吸収特性1つである「土壌由来N(窒素)*」は起生期以降に小麦が吸収する土壌由来の 窒素量を示します。もう一つの「タンパク基本値**」は起生期以降無追肥としたときの子実タンパク質 含有率に相当し、圃場の潜在的なタンパク水準を表します。*NDAS*はこれら圃場の窒素供給特性に、栽 培当年の起生期茎数、窒素施肥量の情報を合わせることで、当年の生育量(タンパク、成熟期窒素吸収 量、穂数、粗麦重)を予測します。また、これら予測値を用い、自動で粗麦重、タンパク重視の条件に 合致した最適窒素施肥量が表示される機能も備えられており、ユーザーの施肥量の決定を支援します。

NDAS は気象の影響を直接考慮していないため、実績年および栽培当年の気象条件が平年と大きく異なる場合は予測精度が低下します。複数年の生産実績を用いることで、気象の年次変動の影響を緩和し、 予測精度を向上させることができます。

*土壤由来 N

起生期以降に土壌から吸収する窒素量。土壌由来Nは土壌の窒素量に限らず、小麦の生育に対する土壌の物理性などの生育制限要因を反映した値であるため、土壌診断値(熱水抽出性窒素、硝酸 態窒素)を反映しているものの、必ずしも一致しない。

<mark>*</mark>*タンパク基本値

子実タンパク質含有率のうち、起生期以降の窒素追肥による上昇分を差し引いた値で、圃場の潜 在的なタンパク水準を示す。

タンパク基本値 + タンパク上昇量(各時期の追肥量×タンパク上昇値の合計) = タンパク タンパク上昇値は窒素施肥量 1kg/10a あたりのタンパク上昇量を表す。単位は point/kgN。

Ⅲ-2 各部のなまえとはたらき

Ⅲ-2-1 シートの構成

*NDAS*は9つのシートで構成されています。このうち、メインとなるのは「シミュレーター」シートで、生産実績の入力と施肥設計の出力を行います。「生産実績保存リスト」は入力した生産実績を保存でき、一度入力した生産実績の呼び出しや複数年の生産実績から圃場の窒素供給特性を求める際に用います。その他のシートの内容は表の通りです。

シート名	内容
シミュレーター	生産実績・施肥設計の入力、出力
生産実績保存リスト	生産実績データの保存、呼び出し、複数年の過去実績の出力
粗麦重最大結果_全体	粗麦重最大条件に係る施肥別全計算結果の表示
	起生期 0~8、幼形期 0~8、止葉期 0~6、開花期 0~3(kg/10a)
	の整数全ての組み合わせ
粗麦重最大結果	粗麦重最大条件適合データセット全結果表示
_条件一致	
タンパク重視結果_全体	タンパク重視条件に係る施肥別全計算結果の表示
	起生期 0~8、幼形期 0~8、止葉期 0~6、開花期 0~3(kg/10a)
	の整数全ての組み合わせ
タンパク重視結果	タンパク重視条件に係る
条件一致	施肥・標準生育等条件一致全結果表示
タンパク重視結果	タンパク重視条件適合データセット全結果表示
_条件一致2	
	施肥設計時に格納された生産実績データを用いる際に
	選択したデーター覧を出力
設計結果保存リスト	施肥設計結果の保存

Ⅲ-2-2 各シートの概要と施肥量自動算出の流れ

(1)シミュレーターシート

主に3種類のレーンで構成されており、過去の生産実績を入力して圃場の窒素供給特性を求める生 産実績レーン、条件に適合した窒素施肥量を表示する「施肥量自動算出」レーン(【標準】【粗麦重最 大】【タンパク重視】)、自由な設計が可能な「施肥量自由設計」レーン(レーン1、2)が配置されて います。

	a =7 • (* •	Ŧ			窒素施肥シミュレート	ッツールNDAS - Micro	osoft Excel		-	-			×
ファイ	ルホーム	挿入ページレイア		閱 _								∾ 🕜 =	- @ X
	и ме	5 Pゴシック -	生産実績		動算出レ-	-ン	目田設訂	+レーン			Σ · Α		
貼りた	IU B	IU- (レーン	e e s	罰 セルを結合して中央権	iz	*.0 .00 条件(すき テーブルとして セル	の 挿入 削除	書式		えと 検索と	
ケリップ	ズード ち	7#21	15	」		- 数4	書式	 書式設定 - スタイ スタイル 	ル・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	*	2 フィルタ 編集	- → 選択 * #	
	T1 09	• (* fx										~	~
4	A B	Ċ	D	E	粗麦重最大	C G	レーン1	I s	JKL	М	N	0	F
1	and also be DOD.								1				
2	窒素随肥シミ	ュレートツール <i>NDAS</i> (Nitrog	en Determination Ass	標準	タ	ンパク重視	見	レーン2					_
4	-	生産実績	-										
6		地域	道史			窒素施肥設計					_		
7		タンパク(%)	10.5		施肥量自動算出		施肥量	自由設計	施肥窒素利	」用率(%)	標準値		
8	生産	粗麦重(kg/10a)	5 <mark>0</mark> 0	標準	粗麦重最大	タンパク重視	レーン1	レーン2					
9		起生期茎数(本/m²)	1000	1/10	1/20	1/20	1/20	1/20		道央	道北	道東	
10	窒麦	起生期	60	6	B	B	6	6	起生期	62.9	54.5	65.1	
11	施肥量	2011月2月 し 美田田	00	0	4	8	8	6	2011/1月	63.6	55.7	64.1	
12	(kg/10a)	即花期	30			p D			開花期	59.3	54.8	50.1	
14		INTIGAT	v v						DHICA1	00.0	34.0	00.1	=
15			実行		実行	実行							
15													
17		項目	実績	標準	粗麦重最大	タンパク重視	レーン1	U-12					
18		起生期窒素吸収量(kg/10a)) 22	22	2.2	2.2	2.2	2.2					
19		追肥由来N(kg/10a)	57	64	8 <mark>.9</mark>	6,9	9. <mark>3</mark>	7.6					
20	圃場窒素	土壤由来N(kg/10a)	30	30	8 <mark>.0</mark>	5 <mark>.0</mark>	8 <mark>.0</mark>	3 <mark>.0</mark>					
21	1共結1年11王	タンパク基本値(%)	8.85										
22	-	百日		墙油	和主治是士	かった力委組	l'is and	1.0					_
23		- 項目 	美旗	1 7 .¥ 10.8	12	30/10里说	111	108					_
24	計算結果	成熟期窒素吸収量(kg/10a)) 10,9	11.5	14.0	12.1	14.0	12.8					
26		穂数(本/m ²)	62	620	684	656	681	658					
27		粗麦重(kg/10a)	846	54	2	₩5	. S ∳∕ e	1					
28													
29			保存		保存	保存	保存	保存					
30													
31	使用专注												
32	DC/TIJJJA												
33	生産実績												
35		1.生産実績の黄色セルに圃	場の地域、過去の生産	におけるタンパ	ク、粗麦重、起生期茎	数、起生期以降の窒	『素施肥量を入力し	ます。					
14 4	+ H SEL	ーター/粗麦重最大結果」全	体、粗麦重最大結果	条件一致人为	いパク重視結果全位	本、タンパク重視結果	果_条件∏∢	1920-1020 P	BH				•
עדב	F 🛄			_							90% 🕀		÷
1				100	1000	No. of Control of Cont	- Includes	▲ ● あ 連	R 般 🖽 🞽 🕐	CAPS 🗗	• 🐞 🖿 🟗	15:5 2014/0	3/12

・自動計算の条件(【粗麦重最大】【タンパク重視】レーン)

【粗麦重最大】レーンではタンパクが基準値9.7~11.3%を満たす条件、【タンパク重視】レーンでは タンパクを基準値中央付近の10.4~10.6%を満たし、ともに粗麦重が最大となる窒素施肥体系が選択さ れ、そのときの予測生育量が表示されます。

レーン		生育条件
	粗麦重	タンパク
粗麦重最大	最大	9.7%以上11.3%以下
タンパク重視	最大	10.4%以上10.6%以下

(2)施肥量自動算出の流れ

まず次ページ施肥条件①の整数の全ての組み合わせについて、成熟期窒素吸収量、タンパク、穂数、 収量が計算されます。次に倒伏や細麦を防止するため、生育条件①、施肥条件②、生育条件②に従って 計算結果が順次抽出され、最終的に最も良い1データがシート上に表示されます。

条件毎に抽出された計算結果は順次関連するシートに出力されます。最終的に選択されなかった窒素施肥量とそのときの生育量の組み合わせについても参照することができます(14~15p. Ⅲ-2-2(4)~(7))。

(3) 生産実績保存リストシート

過去の生産実績の計算結果を保存リストとして表示します。また、一度入力した生産実績の呼び出し や、複数年の生産実績から圃場の窒素供給特性を求めることができます。

(4) 粗麦重最大結果_全体シート、タンパク重視結果_全体シート

粗麦重最大結果_全体シートは【粗麦重最大】、タンパク重視結果_全体シートは【タンパク重視】の 各自動算出レーンにおいて、それぞれ窒素施肥条件(施肥条件①)を当てはめたときの全結果を表示し ます。表示項目は窒素施肥量(起生期、幼形期、止葉期、開花期)、粗麦重、タンパク、成熟期窒素吸 収量、穂数、起生期以降窒素吸収量です。 (5) 粗麦重最大結果_条件一致シート

粗麦重最大結果_全体シートで生育条件①、施肥条件②とも適合するデータのみを表示します。表示 項目は**粗麦重最大結果_全体シート**と同じです。

粗麦重が最大で、最終的に選択されて**シミュレーターシート**に表示された1データは、通し番号(A 列)セルが**資色**で表示されます。

(6) タンパク重視結果 条件一致シート

タンパク重視結果_全体シートで生育条件①、施肥条件②とも適合するデータのみを表示します。表示項目はタンパク重視結果_全体シートと同じです。

各データは生育(生育条件②、粗麦重が施肥設計で用いた過去生産実績以上)各条件の適合の有無に より色分けされます。

(7) タンパク重視結果_条件一致2シート

粗麦重最大結果_条件一致シートで生育条件②が適合するデータ(無色、灰色)のみを表示します。 表示項目は**タンパク重視結果 全体シート**と同じです。

粗麦重が最大で、最終的に選択されて**シミュレーターシート**に表示された1データは、**通し番号(A 列)セルが黄色**で表示されます。

(8) 生産実績抽出リストシート

生産実績保存リストシートの過去の生産実績を用いる際に、選択したデータが表示されます。

(9) 設計結果保存リストシート

窒素施肥設計の計算結果を保存リストとして表示します。

Ⅲ-3 操作方法

まず過去の生産実績を入力し、圃場の窒素供給特性(畑のくせ)を推定します。次に栽培当年の起生 期茎数を入力し、圃場の窒素供給特性と起生期生育を反映した施肥設計を行います。施肥窒素利用率を 変更する場合は、事前に設定します。施肥設計は、自動で施肥量を算出する「自動算出」と、手動で施 肥設計を行う「自由設計」の機能があります。必要に応じ、生産実績や施肥設計結果を保存します。生 産実績を保存することで、複数年データを用いた施肥設計が可能です。

Ⅲ-3-1 ファイルの開閉

*NDAS*は Excel のマクロ機能を使います。マクロが有効となるセキュリティレベル(警告を表示してマクロを無効にするなど)に変更し、コンテンツを有効にしてください。

Excelのセキュリティレベルを下げることで、本ツール以外のExcelファイルを開いたときに、 ウィルス感染等の問題が起こる可能性があります。本ツール使用時以外はマクロセキュリティレベ ルを上げるなど、セキュリティ対策を行ってください。

- (1) ファイルの開示
 - 1. ファイルを開くとシミュレーターシートが表示されます。
- (2) ファイルの終了
 - 1. ファイルの右上にある×をクリックします。
 - 保存する場合は、確認メッセージが表示されたら「保存」を押します。
 ※ファイル名を変更することも可能です。
- Ⅲ-3-2 施肥窒素利用率の設定(シミュレーターシート)

窒素施肥設計を行う際の施肥窒素利用率は、通常は標準値(デフォルト値)を用いますが、施肥 効率の低い台地土での施肥設計の際など、必要に応じて任意の値を設定できます。

1. 窒素施肥設計を行う対象地域を選択 します。

2. 窒素施肥設計を行う対象地域に施肥 窒素利用率の数値を入力します。

・1. で選択した地域のセルが灰色で
 色付けされています。

※施肥窒素利用率の値は30~100%の範 囲で入力してください。

3. 標準値ボタンを押すと、全地域の値 が標準値に戻ります。

- Ⅲ-3-3 窒素施肥設計
 - (1) 過去の生産実績を用いた圃場の窒素供給特性(畑のくせ)の推定

(シミュレーターシート・生産実績レーン)

- 地域を選択します。
 ・施肥窒素利用率の設定(Ⅲ-3-2)で選択済みの場合は、この操作は必要ありません。
- 2. タンパク、粗麦重、起生期茎数、窒素施肥量(起生期、幼形期、止葉期、開花期)の生産実 績を入力します。

※起生期茎数の生産実績がない場合はおおよその値、または mak iDAS の推定値を入力してください。(正確な値を入力した時より推定精度は低下します。)

3. 実行ボタンを押します。

- 4. 起生期窒素吸収量、追肥由来 N、圃 場窒素供給特性(土壌由来 N、タンパ ク基本値)、成熟期窒素吸収量、穂数が 表示されます。
 - ・下段のタンパク、粗麦重は入力と同 じ値が表示されます。
 - ※道東地域の場合は穂数が出力されま せん(他のレーンも同じ)。
 - ・灰色表示(複数年平均 → 21p.)の
 値は参考値で、このとき実行ボタン
 を押しても作動しません。

・**灰色**表示の数値を変更すると黒色表

- MS	2 0 - 10 - 10 - A - 1 2 0 - 10 - 10 - A - 1	£. ≡≡		tothis at the	175 - 15 - 15 - 15	131.01 500	日 日間月 日本 デーブルとして し 一般式出版でくう アルイル	110	前前	85	2- 21 2- 200	(注) 快零
V1.08	- (* 6				P/150		107.10	_	1.024			-
11 12 - 12 - 12	C.	D	E	F	0	н	1	a k	L	1,8	N	0
	1.984				100000000000000000000000000000000000000			-				
	地域	道中			堅太施肥設計							
	タンパウ(家)	10.5		肥量自動算出	a	施肥曼	自由設計		林宇宙素科	(用事(x)	標準值	
生度	相丟重(kg/10a)	500	標準	相去重最大	タンパク重視	レーンパ	1-2				1	
25665	起金期星数(本/m²)	1000	1000	1000	1000	1000	1000		1	運央	通北	道察
1000	起生期	6.0		8	8	6	6		起生朝	62.9	545	65.1
東京	动形纲	0.0	0	- 4	3	8	6		幼形期	63.6	55.7	64.1
(kg/10s)	止期期	3.0	4	2	0	0	0		止藥朝	65.0	52.7	64.3
	關稅明	0.0	0	0	0	0	0		開花朝	59.3	54.8	50.1
		実行	-3	実行	実行							
	項目	XIA	標準	相表重要大	タンパク重視	レーンパ	V-32					
	起生则重要吸収量(hg/10g)	2.2	2.2	22	2.2	2.2	2.2	_				
	這肥由来N(lq/10s)	5.7	6.4	8.9	6,9	8.9	7.6	_				
憲場慶素	土塚田米N(1g/105)	3.0		30	20	3.0	3.0					
L'OB PITE	ランパン茶を(値(系)	8.65	- 62									
-	項目	XH	1 1	相表重映大	タルロク重視	1-1	1-12					
	タンパク(8)	10.5	1 1 8	11.2	10.5	11.1	10.8					
計算結果	成熟明室表明我量(kg/10s)	10.9	1 5	14.0	12.1	14.0	12.8					
	補款(本/m ²)	612	620	664	656	681	658					
_	程畫重(kg/10a)	500	514	592	555	598	560					
		保存		保存	保存	保存	\$#					
使用方法]											
主要案例	· +	AN STOPS	n-butz h- ci h		an aite aite date a							
# SEal	- ター / 程東重殺大站車 主体	相對重是大路界	A件一致。50	100重视结果 主印	an、ALEAHADAU/A あ、312/1行重視結1	▲ 茶件前 41	(6.7.6		L.,			

示になり、レーンの値がすべて黒色表示になると実行ボタンは有効になります。

※お使いのパソコンの動作環境により、計算に時間を要する(10 秒~2 分程度)場合があります。
 ※生産実績が複数年ある場合(同一生産者の隣接圃場も可)、複数年のデータを用いることで
 気象の年次変動を緩和でき、推定精度が高まります。(→ 21p. Ⅲ-3-6(1))。

(2) 当年の窒素施肥設計

あらかじめ生産実績から圃場の窒素供給特性を推定しておいてください (→ 16p. III-3-3)。

1) 施肥量自動算出(施肥量自動算出レーン)

【標準】

- 1. 起生期茎数を入力します。
- 道央または道北地域の標準施肥 量(起生期、幼形期、止葉期、開 花期)と、起生期窒素吸収量、追 肥由来 N、土壌由来 N、タンパク、 成熟期窒素吸収量、穂数、粗麦重 の予測値が表示されます。
 - ※標準施肥量の表示は道央、道北 地域のみとなります。 道東地域は標準施肥量が設定さ れていないため(土壌硝酸態窒 素診断、生育診断によって決定)、 表示されません。

【粗麦重最大】【タンパク重視】

タンパクが基準値内(9.7~11.3%)で粗麦重が最大になる【粗麦重最大】窒素施肥量と、タンパクが 10.4~10.6%の範囲で粗麦重が最大になる【タンパク重視】窒素施肥量の自動計算ができます。

1. 起生期茎数を入力します ※当年の起生期茎数は施肥量算出に 大きく影響します。できるだけ正確 な値(実測値)を入力してください。

- 実行ボタンを押します。
 パソコンの動作環境により、計算
 に時間を要する場合(10 秒~2 分程 度)があります。
- ・推奨窒素施肥量(起生期、幼形 期、止葉期、開花期)と、起生期 窒素吸収量、追肥由来 N、土壌由 来 N、タンパク、成熟期窒素吸収量

来N、タンパク、成熟期窒素吸収量、穂数、粗麦重の予測値が表示されます。

- ・窒素施肥量は整数値が表示されます。
- ・窒素施肥とそのときの各生育量の予測値について、【粗麦重最大】では粗麦重最大_全体シート、粗麦重最大_条件一致シート、【タンパク重視】ではタンパク重視_全体シート、タンパク重視_条件一致2シートに表示されます(→ 14~15p.)。
- ※自動算出は<u>粗麦重が最大</u>となるよう施肥設計されるため、起生期~幼形期の施肥量が多くな る時があります。この場合、細麦となることを避けるため、施肥量自由設計で<u>幼形期までの</u> 施肥量の一部を止葉期以降に振り替えてください。
- 2) 施肥量自由設計(施肥量自由設計レーン)

農作業の都合や生産実績年の気象、 これまでの栽培経験を加味して施肥 量を最終決定します。

- 起生期茎数を入力し、施肥量自 動算出の結果を参考に、窒素施肥 量(起生期、幼形期、止葉期、開 花期)を入力します。
- 2. 起生期窒素吸収量、追肥由来 N、 土壌由来 N、タンパク、成熟期窒 素吸収量、穂数、粗麦重が表示さ れます。起生期茎数、窒素施肥量 の値を変更するとその都度出力値 も変更されます。

3. 予測値を見ながら窒素施肥量の入力を繰り返し、試行錯誤して施肥量を最終決定します。

※タンパク、成熟期窒素吸収量、穂数が次の範囲を満たさない場合、セルが**赤色**で表示されま す。

タンパク:9.7%以上11.3%以下 成熟期窒素吸収量:17kg/10a以下 穂数:700本/m²以下 (道央・道北のみ)

・計算結果は四捨五入して表示されるため、上記範囲内の表示でも実際の値が範囲外であれば赤色で表示されます(例えばタンパク 9.67%、穂数 700.3 本/m²など)。

※気象条件の考慮や各予測値の見方など、施肥設計を行う際に注意する点がいくつかあります。 より良い施肥設計のために、「Q&A」(別紙)も参考にしてください。

|||-3-4 結果の保存(シミュレーターシート)

- (1)過去の生産実績の保存(生産実績レーン)
 - 1. レーンの下側にある保存ボタンを押します。
 - ・すでに同一データを保存済みの場合は無効となります
 - 2. 生産実績保存リストシートにデータが転記されます。
 - 3. 転記したデータの名称を入力します。後から入力することもできます。
 - ・生産実績保存リストシートの▼はオートフィルタで、目的の条件に合致したデータのみを表示させることができます。
 - ※ファイルを閉じた後も結果を残しておく場合は、終了時にファイルの保存を必ず行ってくだ さい。(→ 16p. III-3-1 (2))
 - ※保存したデータを解析またはグラフ化など加工したい場合は、別の Excel 等にデータを移し かえてください。

- (2)当年の窒素施肥設計の保存(【標準】を除く施肥設計レーン共通)
 - 1. レーンの下側にある保存ボタンを押します。
 - ・すでに同一データを保存済みの場合は無効となります
 - 2. 設計結果保存リストシートにデータが転記されます。
 - 3. 転記したデータの名称を入力します。後から入力することもできます。
 - ・設計結果保存リストシートの▼はオートフィルタで、目的の条件に合致したデータのみを表示させることができます。
 - ※ファイルを閉じた後も結果を残しておく場合は、終了時にファイルの保存を必ず行ってください。(→ 16p. Ⅲ-3-1(2))
 - ※保存したデータを解析またはグラフ化など加工したい場合は、別の Excel 等にデータを移し かえてください。

Ⅲ-3-5 保存リストからの削除

過去の生産実績(生産実績保存リストシート)・当年の窒素施肥設計(施肥設計保存リストシート) 共通

- 削除するデータのA列(通し番号)をクリックすると、セルが黄色になり、選択されます。
 別セルをクリックし、再度黄色セルをクリックすると無色に戻り、選択から外れます。
 ・複数のセルの選択も可能です。
- 2. データ削除ボタンを押します。
- 3. 選択したデータが削除されます。

Ⅲ-3-6 保存した過去の生産実績を引用した施肥設計

(1) 複数年の過去の生産実績を用いる(生産実績保存リストシート)

NDAS は気象の影響を直接考慮していないため、実績年および栽培当年の気象条件が平年と大きく 異なる場合は予測精度が低下します。複数年の生産実績を引用して圃場の窒素供給特性を推定する ことで、気象の年次変動の影響を緩和し、予測精度を向上させることができます。

- 1. 生産実績保存リストシートを表示します。
- 引用するデータのA列(通し番号)をクリックすると、セルが黄色になり、選択されます。 別セルをクリックし、再度黄色セルをクリックすると無色に戻り、選択から外れます。 用いる生産実績を全て選択します。
- 3. 平均計算実行ボタンを押します。

4. 生産実績抽出リストシートに選択したデータが表示されます。

5. 確認メッセージ OK ボタンを押します。

6. シミュレーターシートの生産実績レーンに複数年の過去実績から求めた圃場の窒素供給 特性が表示されます。以降の施肥設計はこれまでと同様です。(→ 17p. Ⅲ-3-4)

- ※複数年の生産実績を引用して得られる圃場の窒素供給特性と、複数年の生産実績をあらかじ め平均して生産実績レーンに入力した場合とでは、得られる数値が異なります。 複数年の生産実績を用いる場合は、生産実績保存リストシートを用いて圃場の窒素供給特性 を求めてください。
- ・生産実績レーンには複数データ の平均値が**灰色で**表示されます (参考値扱い)。
- ・
 灰色表示の値は再度変更すると

 黒色表示になります。
- 実行ボタンはレーンの値がすべて
 て
 て
 果色表示の場合のみ有効になります。

3 B	2 U - 1 E - 1 (b - A - 1 2604	£. # 10	11 (F (F) 11	Etotsautesa	ct- 18- % +	134.05	18 〒-ブルして 1044 - 夏天説定 - 2040 スかん	5 BA HI	81	副- 21 (2+ 2+15) (2+ 2+15) (3+	11 (A)
V94	• (* 🖌	215									
U 室系施売/2	C aレートツール AD4S(Nitrogen C	D Setermination As	E aiat Simulator)	F	a	н	1 4	K L	14	N	0
A.S. A.S. A.S. A.S. A.S. A.S. A.S. A.S.	生産業績										
	地域	道头			皇太陽紀設計						
	ダンパク(80	10.2	1	施肥量自動算出	3	施肥曼	自由授計	施肥蜜素料	(用事(x)	標準優	
生度	相表重(kg/10g)	526	標準	相去重最大	ダンパク重視	レーン	6-12				
19040	起生期基数(本/m²)	890		Avector	- contrained	direction -	1	1 2	運央	通北	道理
1000	起生期	6.0				<u> </u>		起生期	62.9	54.5	65.
東东 協評員	幼形啊	1.0		<u>+b_</u>				金历月:北月	63.6	55.7	64.
(lig/10s)	止願期	4.0						止藥明	65.0	52.7	64:
	MIEM	98						96(3)64	59.3	54.8	50
		実作		実行	実行						
	項目	XIA	a s	箱差重最大	タンパク重視	レーンパ	レーン2				
	起生期重要吸収量(kg/10s)	1.9									
	這肥由来N(kg/10s)	7.4									
國場慶素	土塚由来N(kg/10g)	1.9 /		19	1.9	19	1.9				
14101412	タンパク基本/値(N)	8.10									
_	項目	実績	a a	相表重要大	ダルリク重視	1-1	1-12				
	ダンパウ(家)	10.2									
計算結果	或熱朝窒素現积量(leg/104)	112									
	精数(本/m²)	610									
_	相查重(kg/10s)	575					5				
		8.0		477	32.77	677	6.5				
使用方法											
* (V = in											

(2) 一度入力した過去の生産実績を呼び出す

21ページ、Ⅲ-3-6(1)の2.で生産実績を1つだけ選択して平均実行ボタンを押すことで、過去の生産実績を呼び出すことができます。

NDASの留意点

- 〇気象の影響を直接考慮していないため、実績年および栽培当年の気象条件が平年と大きく異なる場合 は予測精度が低下します。複数年の生産実績を用いることで、気象の年次変動の影響を緩和し、予測 精度を向上させることができます。
- ○NDAS は小麦生育が健全なことを前提とするため、病害や倒伏が発生した場合や極端な生育不良(収 量 300kg/10a 未満、起生期茎数 200 本/㎡未満など)の生産実績は使用できません。また、圃場管理 が現在と大きく異なっていた時の生産実績は使用できません。その他、生育後半の極端な多肥(止葉 期以降の追肥量 10kg/10a 以上)はタンパクの予測精度を低下させます。
- ○穂数の予測精度は他項目より低いため、倒伏の目安である 700 本/mを超えるかどうかの参考扱いと してください。また、台地土の施肥設計では予測穂数を考慮しないでください(適合しないため)。

IV 止葉期生育診断ツール *T*-NDAS (ティー・エヌダス)

Ⅳ-1 機能

止葉期生育診断は、止葉期頃の生育量と目標とする収量から、タンパクを基準値(9.7~11.3%)に収 めるために必要な窒素施肥量を決定する技術です。これまでは道東地域(全土壌)にのみ適用できまし たが、道央地域の火山性土でも適用できることが確認されました。

T-NDAS("tomebaki" Nitrogen Determination Assist Simulator)は、止葉期の上位茎数と葉色お よび目標収量を入力することで、止葉期以降の窒素施肥量を計算することができます。また、*NDAS*に よる予測最適施肥量のずれを修正します。(*NDAS*は起生期の生育量は反映できますが、それ以降の生育 量や気象条件は反映できません。このため、起生期以降の気象によっては、予測した最適施肥量にずれ が生じる場合があります。)

Ⅳ-2 シートの構成

止葉期生育診断ツール *T-NDAS*は2つのシートで構成されています。このうち、メインとなるのは「止 葉期追肥量算出」シートで、止葉期の生育量と目標収量の入力と施肥量の出力が行われます。「結果保 存リスト」シートは止葉期追肥量算出シートの出力値を保存できます。

シート名	内容		
止葉期追肥量算出	止葉期生育量、	追肥量の算出に係る入力、	出力
結果保存リスト	止葉期生育量、	追肥量の結果の保存	

Ⅳ-3 操作方法

止葉期生育量と目標収量を入力し、最適追肥量を算出します。必要に応じ、結果を保存します。

窒素吸収量と最適追肥量の算出(Ⅳ-3-2)

結果の保存(Ⅳ-3-3)

Ⅳ-3-1 ファイルの開閉

*T-NDAS*は Excelのマクロ機能を使います。マクロが有効となるセキュリティレベル(警告を表示してマクロを無効にするなど)に変更し、コンテンツを有効にしてください。

Excelのセキュリティレベルを下げることで、本ツール以外の Excel ファイルを開いたときに、 ウィルス感染等の問題が起こる可能性があります。本ツール使用時以外はマクロセキュリティレベ ルを上げるなど、セキュリティ対策を行ってください。

(1) ファイルの開示

1. ファイルを開くと止葉期追肥量算出シートが表示されます。

- (2) ファイルの終了
 - 1. ファイルの右上にある×をクリックします。
 - 2.保存する場合は、確認メッセージが表示されたら「保存」を押します。 ※ファイル名を変更することも可能です。

Ⅳ-3-2 窒素吸収量と最適追肥量の算出(止葉期追肥量算出シート)

地域を選択します。
 ※道央は火山性土のみの適用です。

2. 止葉期上位茎数、葉色値、目標 収量(粗麦重)を入力します。

- 推定止葉期窒素吸収量、目標成 熟期窒素吸収量、窒素追肥量が表 示されます。
 - 入力を変更するとその都度出力 値も変更されます。
 - ※ 窒素追肥が不要の場合は 0kg/10aが表示されます。

570	- (+ _A) 🖌	-				3			
	٩	D	E	F.	G	н	1	J	К.
止驚 注印	葡萄新ツール 7-Al2AS("tor	loo Nº Mad	ragen Determination A	esist i	Simulator)				
止業記述	aon <mark>erranaeora</mark>	·							
地長	止」、新上位菜款(本/m?)	葉色循	目標收量(10a)		推行止業期登券限収量(kg/10a)	目標成熟期要素吸收量(sg/10a)	窒素追肥量(ig (ta)		
	700	42	600		103	13.1	34		保存
道央	700	45	550	-	10.9	120	1.2		保存
	700	40	500		88	109	0.4		保存
使用方法	a la presida o Marcine								
	1、地域とシンから遠信しま 2、止葉期上位茶数、紫色(9. 8. 目標の5	きを入力します。						
	3.止葉駒の推定螢素吸収	🖳 ta 6711	5						
	タンパクを基準値内に確	持しかつ段	定する目標収量を得る	1:00	に必要な応熱期の目標窒素吸収量。	上集期以降の戦速窒素追脱量が多	t#anita		
	※窒素追肥の下要な場合に	30kg/10a2;	表示されます。						
1									

Ⅳ-3-3 結果の保存(止葉期追肥量算出シート)

- 1.保存するレーンの右側にある保存ボタンを押します。
 - ・保存するデータのレーンと同じ行にあるボタンを押してください。
 - ・すでに同一データを保存済みの場合は無効となります。
- 2. 結果保存リストシートにデータが転記されます。
- 3. 転記したデータの名称を入力します。後から入力することもできます。
 - ・結果保存リストシートの▼はオートフィルタで、目的の条件に合致したデータのみを表示させることができます。
 - ※ファイルを閉じた後も結果を残しておく場合は、終了時にファイルの保存を必ず行ってください。(→ 24p.)
 - ※保存したデータを解析またはグラフ化など加工したい場合は、別の Excel 等にデータを移し かえてください。

- **Ⅳ-3-4 結果の保存リストからの削除**(結果保存リストシート)
 - 削除するデータのA列(通し番号)をクリックすると、セルが黄色になり、選択されます。
 別セルをクリックし、再度黄色セルをクリックすると無色に戻り、選択から外れます。
 ・複数のセルの選択も可能です。
 - **2.** データ削除ボタンを押します。
 - 3. 選択したデータが削除されます。

133 A	• (8	A				6155		21.0-	10.0
Ă.	Β.								
		C	0	E	F	G	н	1	J
	結果保存リン	18			データ削除				
19				入力項目				出力項目	
	7-28			地域	止葉期上位茎数(本/mg)	常色儀	目標収量(kg/10a)	推定止葉期窒素吸収量(kg/10a)	目標成熟期窒素吸收
	1(生産者等	= 2(團場等)=3(年/次等)=	1	*				-
1	-	P	2011	道来	600	42.0	600	89	
3	2	0	2011	12.0	500	40.0	500	B4	
4	8	D	2011	诸中	500	42.0	000	80	
		E	2012	道奈	700	45.0	550	109	
- 0	D	F	2013	道來	450	45.0	550	105	
7	D	G	2013	道東	700	40.0	500	10.0	
18		н	2013	通典	700	42.0	600	103	
19	_		2013	道矢	700	40.0	500	9.0	
10		J	2013	道来	650	42.0	600	8.7	
10	í .		2013	10.90	000	42.0	500	87	
12		M	2013	10.0	200	400	650	109	
14	6	N	0043	in ch	700	47.0	550	103	
15	Ğ	0	2013	道奈	700	40.0	500	98	
10	н	p	2013	道央	580	42.0	600	87	
17	H.	a	2013	道央	580	42.0	550	8.7	
18	н	R	2013	道央	580	42.0	500	87	
19	н	s	2013	道央	580	42.0	600	8.7	
	1 A 1								

V 参考資料

V-1 播種量計算ツール makiDAS

V-1-1 必要播種量に係る計算式

項目		式		
播種予定日(月/日)	Α			
千粒重(g)	В			
出芽率(%)	С			
目標越冬前茎数(本/m²)	На			
越冬前積算気温(°C)	D		=T(A1)+T(A2)+···+T(11/15) ただし T(An)>3.0 T(An): An における日平均気温(°C) A1 は播種日	(1)
越冬前葉齡(枚)	E	道央 道北	$=7.8952 \div (1+14.3402 \times \exp(-0.006286 \times D))$ $=6.8925 \div (1+14.4148 \times \exp(-0.007956 \times D))$	(2)
目標越冬前茎数(本/m²)を	Ea	道央	$= \operatorname{Ha} \div (\mathbf{C} \div 100 \times 0.6789 \times \exp(0.3886 \times \mathbf{E}))$	(3)
得るために必要な播種量(粒/m ²)	га	道北	$= \operatorname{Ha} \div (\mathbf{C} \div 100 \times 0.3804 \times \exp(0.5272 \times \mathbf{E}))$	(3)
必要播種量(kg/10a)	Fb	-	$=$ B \div 1000 × Fa	(4)
シンキー レイチャンチャーズ				

注) 式の - は道央・道北共通

越冬前積算気温と目標越冬前茎数に必要な播種量の関係

V-1-2 越冬前茎数に係る計算式

項目		式		
播種予定日(月/日)	Α			
千粒重(g)	В			
出芽率(%)	С			
播種量(kg/10a)	G]
越冬前積算気温(℃)	D		=(1)	
越冬前葉齡(枚)	E	_	= (2)	
越冬前茎数(本/m²)	Hb	道央 道北	$= (G \times 1000 \div B) \times (C \div 100) \times 16.8853 \div (1 + 122.8273 \times exp(-0.007422 \times D))$ = (G × 1000 ÷ B) × (C ÷ 100) × 14.7094 ÷ (1 + 116.8048 × exp(-0.009296 × D))	(5)
記生期支数(木/m ²)	1	道央	=0. 9215 × Hb + 222. 71	(6)
起工册全致(平/Ⅲ)	•	道北	$=0.9489 \times Hb + 298.46$	(0)

注) 式の - は道央・道北共通

播種粒数別の越冬前積算気温と越冬前茎数の関係

V-2 窒素施肥シミュレートツール NDAS

V-2-1 生産実績に係る計算式

項目		式						
粗麦重(kg/10a)	Α							
タンパク(%)	В							
起生期茎数(本/m ²)	С							
窒素施肥量(kg/10a)	Fa (#	記生期), <mark>Fb</mark>	(幼形期), Fc(止葉期), Fd(開花期)					
		道央	$=0.0029 \times C - 0.6828$					
起生期窒素吸収量(kg/10a)	Ne	道北	$=0.003 \times C - 0.9879$	(3)				
		道東	=0. 0024 × C −0. 9773					
			$= (Fa \times Ea + Fb \times Eb + Fc \times Ec + Fd \times Ed) \div 100$					
追肥由来 N(kg/10a)	Nt	(地域別)	Ea~Ed:施肥窒素利用率(%)					
			Ea(起生期), Eb(幼形期), Ec(止葉期), Ed(開花期)					
土壤由来 N(kg/10a)	Ns	I	=Nm-Nt-Ne	(4)				
			$=\mathbf{B}-(\mathbf{Fa}\times\mathbf{Pa}+\mathbf{Fb}\times\mathbf{Pb}+\mathbf{Fc}\times\mathbf{Pc}+\mathbf{Fd}\times\mathbf{Pd})$					
タンパク基本値(%)	Bb	(地域別)	Pa~Pd:タンパク上昇値(point/kgN)	(6)				
			Pa(起生期),Pb(幼形期),Pc(止葉期),Pd(開花期)					
成熟期窒素吸収量(kg/10a)	Nm	I	$=$ A \div (-5. 1907 × B +100. 41)	(1)				
	D	道央	=299+0. 190 × C+16. 5 × Fa+11. 6 × Fb+8. 1 × Fc	(5)				
1芯女(ハー)	U	道北	=191+0.133×C+11.6×Fa+17.8×Fb+9.9×Fc	(3)				

注1)項目の順番はツール画面の表示順

注2) 式の - は道央・道北・道東共通

注3) 道東の穂数は設定なし

V-2-2 施肥設計に係る計算式

項目		式		
起生期茎数(本/m ²)	С			
窒素施肥量(kg/10a)	Fa (走	記生期), <mark>Fb</mark> (约	h形期), Fc(止葉期), Fd(開花期)	
起生期窒素吸収量(kg/10a)	Ne	(地域別)	= (3)	
追肥由来 N(kg/10a)	Nt	(地域別)	= (2)	
土壤由来 N(kg/10a)	Ns	-	(生産実績による計算値と同じ)	
タンパク基本値(%)	Bb	(地域別)	(生産実績による計算値と同じ)	
			$= Bb + (Fa \times Pa + Fb \times Pb + Fc \times Pc + Fd \times Pd)$	
タンパク(%)	В	(地域別)	Pa~Pd:タンパク上昇値(point/kgN)	(6a)
			Pa(起生期),Pb(幼形期),Pc(止葉期),Pd(開花期)	
成熟期窒素吸収量(kg/10a)	Nm	-	=Nt+Ne+Ns	(4a)
穂数(本/m ²)	D	道央・道北	=(5)	
粗麦重(kg/10a)	Α	—	=Nm × (-5. 1907 × B+100. 41)	(1a)
注1) 百日の順釆けい―11両	i ま う	ミニ 「店		

注1)項目の順番はツール画面の表示順

注2) 式の - は道央・道北・道東共通

注3) 道東の穂数は設定なし

V-2-3 施肥窒素利用率とタンパク上昇値

地域	施肥窒素	利用率(%)	(デフォ	タンパク上昇値(point/kg 追肥 N)				
	起生期	幼形期	止葉期	開花期	起生期	幼形期	止葉期	開花期
道央	62. 9	63. 6	65. 0	59.3	0.14	0.18	0. 27	0.24
道北	54. 5	55. 7	52. 7	54.8	0.15	0.19	0.30	0. 29
道東	65.0	64. 1	64. 3	50. 1	0.14	0. 18	0.26	0. 25

V-2-4 【標準】レーンの施肥量表示

地域	起生期茎数	窒	素施肥量	量(kg∕10)a)	
		起生	幼形	止葉	開花	
	(本/m²)	期	期	期	期	
	800 未満	6	4	4	0	
道央	800 以上 1300 以下	6	0	4	0	
	1300 超過	2	0	4	0	注1)土壌由来Nによる対応は
道北	(条件なし)	6	4	4	0	考慮していない
道東	_	—	_	_	-	注2) 道東は非表示

V-2-5 ツールの精度

成熟期窒素吸収量、タンパクにおける「ツールの予測値」と「実測値」の分布

V-3 止葉期生育診断ツール T-NDAS

V-3-1 計算式

項目		式		
止葉期上位茎数(本/m²)	Α			
葉色値	В	[]	
目標収量(kg/10a)	С	[
推定止葉期窒素吸収量(kg/10a)	D	道央 道東	$=0.\ 0003 \times \mathbf{A} \times \mathbf{B} + 1.\ 44$ $=0.\ 0004 \times \mathbf{A} \times \mathbf{B} - 1.\ 2$	(1)
*推定成熟期窒素吸収量(kg/10a)	Е	道央 道東	$=0.5356 \times D + 5.39$ $=0.58 \times D + 6.6$	(2)
目標成熟期窒素吸収量(kg/10a)	Ec	道央 道東	$= \mathbf{C} \div (-5.1907 \times 10.5 + 100.41)$ $= 0.017 \times \mathbf{C} + 5.1$	(3)
窒素追肥量(kg/10a)	F	道央 道東	$= (\mathbf{E}\mathbf{c} - \mathbf{E}) \div 0.65$ $= (\mathbf{E}\mathbf{c} - \mathbf{E}) \div 0.7$	(4)

注1)推定成熟期窒素吸収量は表示なし

V-3-2 ツールの精度

「ツールによる止葉期以降の最適窒素追肥量の推定値」と「実際の追肥量」の差の区分と子実タンパク質含有率 の分布

最適窒素追肥量の推定値に合わせて追肥量を調節した場合、タンパク基準値適合率は高まる。

参考文献

- (1)秋まき小麦の起生期無機態窒素診断による窒素追肥量の設定 (道立十勝農試、平成17年普及推進事項)
- (2) 生産情報に基づく水稲の成熟期窒素吸収量推定と施肥設計への応用 (道立上川農試、平成18年指導参考事項)
- (3) めん用秋まき小麦「きたほなみ」の高品質安定栽培法 (道立中央農試・上川農試・十勝農試・北見農試、平成20年普及推進事項)
- (4) 道央地域における秋まき小麦「きたほなみ」の高品質安定栽培法 (道総研中央農試、平成23年普及推進事項)
- (5) 道北地域における秋まき小麦「きたほなみ」の高品質安定栽培法 (道総研上川農試、平成23年普及推進事項)
- (6) 道東地域における秋まき小麦「きたほなみ」の高品質安定栽培法 (道総研北見農試・十勝農試、平成23年普及推進事項)
- (7)秋まき小麦「きたほなみ」の生産実績を活用した窒素施肥設計法と生育管理ツール (道総研中央農試・上川農試、平成26年普及推進事項)

2015年3月18日 第二版

著作·発行 北海道立総合研究機構 農業研究本部

- 1. 利用許諾条件
- 1) 免責事項
- (1)地方独立行政法人北海道総合研究機構(以下「道総研」という。)は、本ツールに関して不具合や エラーや障害が生じないことを一切保証しません。
- (2) 道総研は、本ツールに起因して使用者に直接又は間接的損害が生じても、いかなる責任を負わず、 一切の損害賠償を行わないものとします。
- (3) 道総研は、本ツールに不具合、不備等があっても、程度の如何にかかわらず訂正、修補する義務を 負わないものとします。
- 2) 著作権その他の権利
- (1) 本ツールの著作権その他一切の権利は、道総研に帰属します。
- (2) 本ツールを無断で複製、転載、改変などに類する行為を禁止します。
- (3) 本ツールを販売、貸与、再使用許諾、営業することなどはいずれもできないものとします。
- (4) 事前の告知なしに本ツール変更又は配布を中止する場合があります。
- 3)利用条件
- (1) 本ツールの利用は、原則として日本国内に限ります。

(2) 本ツールは、非営利目的の利用に対し無償で配布します。営利のために利用する場合は有償になる場合があります。詳しくはお問い合わせください。

2. 問い合わせ先

本ツールに対する質問・要望等は下記にご連絡ください。

- 北海道立総合研究機構 農業研究本部 中央農業試験場 栽培環境グループ 電話:(0123)89-2580
 - +勝農業試験場 生産環境グループ 電話:(0155)62-9837
 - 北見農業試験場 生産環境グループ 電話:(0157)47-2565