YAG レーザによるアルミニウムの表面改質(第1報)

- 溶射皮膜と母材との合金化-

赤沼 正信,田中 大之,片山 直樹

Surface Modification of Aluminium by YAG Laser Heating — Alloying of Thermal Sprayed Coatings and Aluminium Base Material —

Masanobu AKANUMA, Hiroyuki TANAKA, Naoki KATAYAMA

抄 録

Al あるいは Al 合金の表面に溶射法により異種材料を単層あるいは複層コーティングし、この表面に YAG レーザを照射することにより、表面硬化層を形成させる実験を行った。その結果、平均出力 1kW 未満のパルス発振型 YAG レーザによっても、表面改質材料の種類、厚さ、構成及びレーザ照射条件を適切に選択することにより、厚さ及び組織の均一な表面改質層(合金化層)の形成が可能であることがわかった。本実験では、Ni 系自溶合金と TiO₂ の複層溶射を施した Al 表面にレーザ照射することで、表面から 0.28mm の深さまで、硬さ 430HV を有する表面硬化層を形成することができた。

1.はじめに

レーザ照射による表面改質法は,鉄鋼,非鉄金属等の母材 表面に①粉末塗布,②めっき,③溶射等により異種材料を供 給し,その表面に CO₂ あるいは YAG レーザを照射すること によって母材表面にクラッディング層や合金化層を形成させ る技術である。

本研究は、母材として Al あるいは Al 合金を用い、その 表面に溶射法により異種材料を単層または複層コーティング し、後に YAG レーザを照射することにより Al とコーティ ング材料との間で合金化あるいは Al マトリックス中に硬質 粒子を分散強化した表面合金化層を形成させ、母材表面の耐 摩耗性を向上させることを目的としている。実験は、コーテ ィング材料の種類やレーザ照射条件を変化させて表面改質層 を形成し、それぞれの表面及び断面の観察、硬さ分布の測定、 さらに溶融部断面の元素及び組成分析を行った。これらの結 果から、YAG レーザによるアルミニウムの表面改質条件の 基礎的検討を行った。

 の一部である。

2. 実験方法

2.1 試料の作製

母材には、A1050(純アルミニウム系)とA5052(Al-Mg 系)の2種類を用い、その寸法は100×50×10mmとした。 溶射の前処理にはブラスト法を用いた。ブラストは吸引式ブ ラスト法で行い、アルミナグリット(60メッシュ)を0.2MPa の圧力で試料に吹き付けた。溶射は、金属系材料には高速ガ スフレーム溶射法で、またセラミックス系材料にはプラズマ 溶射法で行った。表1に使用した溶射材料の成分及び粒径を 示す。Ni系自溶合金(以後Ni-Crと記す)はAlとの合金 化を、またAl₂O₃とTiO₂はAl中への分散強化を目的に選択

表1 溶射材料の成分及び粒径

溶射材料	成 分 (wt%)	粒径(µm)
Ni-Cr	Cr:17, Fe:4, B:3.5, Si:4	15~53
	C: 1, bal.: Ni	
Al ₂ O ₃	Al_2O_3 ; 98, SiO_2 : 0.5	5~20
TiO2	TiO ₂ :98.5	5~25

した溶射用粉末材料である。さらに本実験では金属とセラミ ックスの複層化による表面改質効果を調べるため、母材表面 に Ni-Cr, その上に TiO₂を溶射した試料も作製し,実験に 供した。

2.2 表面改質方法

図1にレーザによる表面改質方法の模式図を示す。レーザ 照射実験にはパルス発振YAGレーザ(東芝LAY806BB,マ ルチモード)を用い,まず母材に溶射を施した試料をXYス テージ上にのせ,次に平均出力400W,パルス幅1ms,繰 返し数30Hzのレーザ照射条件によって一方向に50mmの長 さまでレーザを照射した。このときデフォーカス値(試料表 面から焦点位置までの距離)を2~10mmまで順次変えるこ とによって試料表面に当てるレーザのビーム径を調節し,す なわち単位面積におけるレーザパワー(パワー密度)を変化 させた。また,試料の移動速度も1~20mm/minまで変え ることにより単位時間当たりのパワー(エネルギー密度)を 変化させてレーザ照射実験を行った。

図2にレーザ出力の概略図を,さらに表2にデフォーカス 値とビーム径及びパワー密度との関係を示す。なお,ビーム 径はレーザ出力を最小にして黒色紙上に照射し,バーンパタ ーンを形成させて測定した。

図1 レーザによる表面改質の模式図

表2 デフォーカス値とビーム径及びパワー密度との関係

デフォーカス値	ビーム径	パワー密度	1パルスあたりの	
(mm)	(mm)	(w/ m)	パワー密度 (kw/m)	
2	1.45	354	8.06	
4	1.70	176	5.86	
6	2.15	110	3, 66	
8	2.70	70	2.33	
10	3.35	45	1.51	
		· · · · · · · · · · · · · · · · · · ·	*平均出力 400Wの場合	

2.3 溶融部の観察及び硬さ測定

レーザ照射部の中心(端部より25mm)を切断し,断面を 研磨後,溶込み深さ及び溶込み幅の測定を行った。図3に溶 込み深さ及び幅の測定基準を示す。また,レーザ照射による 溶融部(表面改質層及び表面合金化層と同意)の外観及び組 織観察には実体顕微鏡,光学顕微鏡(OM)及び走査型電子 顕微(SEM)を用い,さらに,エネルギー分散型X線分析 装置(EDX),X線回折装置(XRD)により元素分析及び組 成分析を行った。溶融部断面における硬さは,マイクロビッ カース硬度計を用いて測定した。この際の荷重は0.2452N, 保持時間は15sとした。

図3 溶込み深さ及び幅の測定規準

3. 実験結果及び考察

3.1 溶融部の断面形状及び硬さ

表3に、母材をA5052とし、その表面に①ブラスト処理、 溶射にて②Al₂O₃、③TiO₂、④Ni-Crをそれぞれ被覆(皮膜厚 さ、それぞれ10、15、60 μ m)し、その上からレーザ照射(デ フォーカス値6mm、移動速度10mm/s)した試験片の溶込み 幅、溶込み深さ及びマイクロピッカース硬さの測定結果を示 す。TiO₂及びNi-Crを被覆した試料の断面は、エッチング 処理無しでも溶融部が容易に判別できた。これに対し、ブラ ストのみ及びAl₂O₃を被覆した試料ではエッチング処理無し で溶融部が判別できず、そのためケラー試薬(48%ふっ酸: 0.5cc,濃塩酸:1.5cc,濃硝酸:2.5cc,蒸留水:95cc)を 用いてエッチングし溶融部を判別した。

ブラストのみ及び Al₂O₃ を被覆した試料では硬さの上昇が

なく,また溶込み深さも TiO2 及び Ni-Cr のものと比べ小さ い値となっていた。一方, TiO2 あるいは Ni-Cr を被覆した 試料では、TiO2で硬さがわずか上昇しており、また、Ni-Cr では 200HV 以上の硬さを示した。TiO2 は溶込み幅及び溶込 み深さともに大きく、このことから TiO2 はレーザ光に対し て吸収率の高い材料であると推察できる。なお、松田らの報 告¹⁾では、TiO₂は表面改質材料(合金化材料)としては効果 がないとの結果であったが、本実験の場合 TiO。溶射皮膜に YAG レーザを照射することにより、硬さは 60HV 程度と低 い値であったが、硬さ分布及び組織的にも均一な表面改質層 が得られた。また、中岡らの報告²⁾ でも TiO₂ 粉末を Al 母材 に塗布後, CO2 レーザを照射した結果, レーザ照射条件によ って硬さ及び層構造の異なる表面改質層が得られている。一 方, Ni-Cr はもともとろう材として用いられている材料で あることから、皮膜自身が溶融すると Al とぬれやすく、反 応し合金化すると考えられる。しかし、合金成分の希釈化に よる硬さの低下,また溶融部の断面形状がクレーター状とな る傾向が認められ、レーザ照射条件の検討さらには溶射被覆 方法の検討が必要であることがわかった。

表3 溶込み幅、溶込み深さ及び硬さの測定結果

溶射材料	溶込み幅(㎜)	溶込み深さ(1111)	硬さ(HV)
Al ₂ O ₃	1.19	0.30	46
TiO2	1.63	0.46	62
Ni-Cr	1.45	0.50	218
プラスト処理	1.50	0, 21	45
		1	村:A 5052

^デフォーカス:6 mm 5 動 速 度:10mm/s

3.2 母材の種類と溶込み量の関係

本実験では、母材としてA1050(純アルミニウム系)と A5052(Al-Mg系)の2種類のAl板を用いた。それぞれの 化学成分を比較すると、A5052では合金元素としてMgを2 ~3wt%含有しており、そのためレーザ照射後のそれぞれ の溶融形状は異なることが予想された。その理由としては、 各種鋳造用アルミニウム合金にCO2レーザ光を照射し、そ れぞれの吸収率を測定した報告例³⁾があり、そこでは合金元 素の増加によりレーザ光の吸収率は増加する結果が得られて いる。本実験では、それぞれの母材にブラスト処理を施し、 その表面にデフォーカス値を6~10mm変化させてレーザー 光を照射し、その後溶込み幅及び溶込み深さの測定を行うこ とにより、合金元素の溶融形状に与える影響を調べた。図4 にその結果を示す。

溶込み幅については差異が認められないが,溶込み深さでは A5052 の方が 0.1mm 程度大きくなる傾向が認められた。しかし,この値は予想していたほど大きなものではなかっ

た。西村らが実施した CO₂ での結果⁴⁾ では明らかに A5052の 方が溶込み幅及び溶込み深さともに大きくなっており,特に 溶込み深さでは 0.3mm 以上の差が認められた。YAG レー ザの場合で大きな差が認められなかった理由として, CO₂ レ ーザと比較して波長あるいは発振条件の違いに起因している と考えられるが,詳細は現在のところ不明である。

図4 田材による溶込み量の違い(移動速度:5mm/s)

3.3 レーザ照射条件の違いによる溶融形状の変化

レーザ照射条件で試料に投入される単位時間当たりのパワ ー密度を変える要因は、試料表面から焦点位置までの距離で あるデフォーカス値、試料の移動速度及びレーザ出力であ る。本実験でレーザ出力は予備検討の段階で表面改質に YAG レーザ加工機の最大出力 400W を必要とすることが明 らかになったため、レーザ出力を 400W 一定とし、他のデフ ォーカス値、試料の移動速度を順次変えてパワー密度及びエ ネルギー密度を変化させ、溶融部の挙動を調べた。図5に母

材 A1050 に溶射皮膜 Ni-Cr を約 30 µm 形成した試料に対 し,移動速度を5mm/sと一定としデフォーカス値を5~10 mm 変化させてレーザ照射した試料の断面及び表面写真を示 す。図6に、デフォーカス値と溶込み量(溶込み幅,溶込み 深さ)の関係を示す。溶込み幅はデフォーカス値が大きくな るにつれて大きくなるが、デフォーカス値 6mm を越えると 逆に減少していく傾向が認められる。これはデフォーカス値 が大きくなるとレーザビーム径が大きくなり、レーザ照射部 分が広がって溶融部分の幅は大きくなるが,次第に試料に投 入されるパワー密度は減少し、ビームの外周部においては溶 射皮膜のみ溶融し,母材溶融まで至らず,その結果溶融幅の 減少につながったものと考えられる。一方,溶込み深さにつ いてはデフォーカス値が大きくなるとパワー密度は減少する ため、当然その値は小さくなることが予想され、本実験でも その傾向を示した。なお、デフォーカス値2及び4mmの条 件では,溶融部及び近傍で変色あるいは不規則形状の溶滴が 多数認められ、従って表面改質条件としては適さないものと 思われる。

母材:A 1050 移動速度:5mm/s

図5 デフォーカス値の違いによる溶融形状の変化

次に、図7にデフォーカス値8mm一定とし、移動速度を 変化させたときの溶融部の断面及び表面写真を示す。また, 図8に移動速度と溶込み量の関係を示す。移動速度が増加す るにつれて、単位時間当たりのパワー密度(エネルギー密度) は減少するため, 溶込み深さは移動速度の増加とともに次第 に減少することが予想される。しかし、実際には低速度側の 1 あるいは 5mm/s の条件下でも溶込み深さは小さくなって おり,従って本実験の場合移動速度に関係なくほぼ一定とな っている。ただし,溶融部の断面形状を観察すると低速度で の試料では中心部がくぼみ,端部が盛り上がっていることが わかった。レーザ照射した場合、溶融部では材料の溶融やガ スあるいはプラズマの発生, さらに溶融物の飛散等が起こ り、レーザ光がこの雰囲気に吸収されたり、溶融形状が大き く影響される現象が報告5)されている。本実験でもこれらの 諸現象が相互に作用していると考えられるが詳細は不明であ り、今後の検討が必要である。一方、溶込み幅についてはビ ーム幅が一定にもかかわらず移動速度の増加とともにその値 は次第に小さくなっている。これは移動速度の増加とともに 単位時間当たりのパワー密度(エネルギー密度)は減少する ことから, ビーム端部での母材溶融が困難となったものと考 えられる。

以上の結果から,表面改質に適するデフォーカス値及び移 動速度は,デフォーカス値が6または8mm(1パルスあた りのパワー密度3.66,2.33kW/mm²),また移動速度は5ま たは10mm/sであると判断した。

3.4 溶射皮膜の複層化による効果

前記の結果からTiO2はレーザ光の吸収率が良いと考えら

母材:A 1050 移動速度:5 mm/s

図8 移動速度と溶込み量の関係(A1050/Ni-Cr)

れ、またそれ自身硬さは 800HV 以上あり金属マトリックス 中に均一分散すれば母材の表面改質に寄与できるセラミック ス材料であると思われる。一方, Ni-Cr は Al 表面の酸化を 防止し、かつ Al とのぬれ性もよく、さらに溶融後 Al-Ni 系 の新たな金属間化合物を形成する⁶⁾⁷⁾ことも考えられる。し かし, それぞれ単独溶射皮膜では十分な表面改質効果が前記 の結果では認められなかった。そこで本実験ではそれぞれの 機能を生かすため A1050/Ni-Cr/TiO₂ からなる複層の試料 を作製し、デフォーカス値 6mm 及び移動速度 5mm/s の条 件でレーザ照射実験を行い,溶融断面形状の観察,硬さ分布 の測定及び各元素の面分析を行った。図9に溶融部の断面写 真,図10に硬さ分布を示す。TiO2の皮膜厚さ20μmの試料で は溶込み深さが Ni-Cr 単層のものに比べ約2倍となってお り、このことから TiO₂ の吸収率向上効果が現れたと言える。 しかし, TiO2の皮膜厚さ50μmの試料では落込み深さがNi-Cr 単層のものと同程度となっている。これは、TiO2 皮膜が 厚いとビームエネルギーが TiO2の溶融あるいは分解反応に 費やされ深さ方向への溶融反応が少なかったためと考えられ る。溶融部の硬さは、Ni-Cr 単層のもので表面から 0.3mm まで約180HV, TiO2の皮膜厚さ20μmの試料では表面から0.4 mm まで約240HV さらに TiO2の皮膜厚さ50μmの試料では 表面から 0.28mm まで約 430HV となっている。このことか

デフォーカス: 6 mm 移動速度: 5 mm/s

図 9 複層溶射皮膜における溶融形状

及び Al 中への分散強化あるいは Al,Ni 等各元素との化合物 形成により溶融部の硬さ上昇に寄与している可能性がある。 また,図 9 の縦断面形状を観察すると,TiO₂の皮膜厚さが 50 μ m と厚い試料において,溶融部は底部がフラットで均一な 厚さとなる特徴を有していた。

図10 溶融部の硬さ分布

次に, SEM 及び EDX を用いて溶融部分の元素分析を行 い,図11,12にNi-Cr 単層及びNi-Cr/TiO2 複層の場合の 結果を示す。さらに,図13にNi-Cr/TiO。複層でのX線回折 パターンを示す。Ni-Cr 単層の場合, Al と Ni の面分析で 濃度差が認められる。一方, 複層の場合特徴ある偏析もなく それぞれの元素が均一に分布していた。Ti も溶融部内で均 ーに分布していたが、TiがTiO2の形で分散しているのかあ るいは Al, Ni 等の元素と反応し化合物を形成しているの か,図13の結果では同定不可能であった。図13の結果からは, Ni-Cr/TiO2 複層試料にレーザ照射すると母材 Al と Ni-Cr 中のNiとが反応し、新たにNi-Al系金属間化合物NiAla, Ni₂Al₃が析出していることが明らかとなった。析出した NiAl₃, Ni₂Al₃ それぞれの硬さは, 700~770HV, 1000HV で ある⁸⁾といわれている。このことから本実験で形成された表 面改質層の硬さは、これらの金属間化合物の析出、分布状態 によって大きく影響を受けていると考えられる。

これまでレーザによる表面改質実験には、ほとんどが数 kW以上の連続発振型CO₂レーザが利用されてきたが、本実 験のように平均出力1kW未満のパルス発振型YAGレーザ によっても、表面改質材料の種類、厚さ、構成及びレーザ照 射条件を適切に選択することにより、厚さ及び組織の均一な 表面改質層(合金化層)の形成が可能であることがわかった。 なお、溶融部の断面写真(図10)で一部割れが観察されるが、 これは急熱急冷時に発生する残留応力によるものか、あるい は脆弱な反応生成物の析出によるものと考えられる。この割 れの防止対策としては、予熱を加える、応力緩和層の形成、 脆弱な反応生成物ができないよう材料構成を変更するなどが 考えられ、今後検討する予定である。

図11 Ni-Cr 単層試料における溶融部断面の SEM 及び特性 X線像

図12 複層における溶融部断面のSEM及び特性X線像

図13 X線回折パターン(Ni-Cr/TiO₂複層試料)

4.おわりに

本研究では、Al あるいは Al 合金の表面に溶射法により異 種材料を単層あるいは複層コーティングし、この表面に YAG レーザを照射することにより、表面硬化層を形成させ る実験を行い、その結果以下の結論を得た。

- (1)Al 表面に Ni 系自溶合金あるいは TiO₂ を溶射することに より,レーザ溶融部の溶込み量(溶込み幅と溶込み深さ) が大きくなった。
- (2)本実験で行ったレーザ照射条件では、表面改質に適するデフォーカス値及び移動速度は、デフォーカス値が6または8mm(1パルスあたりのパワー密度3.66,2.33kW/mm²,移動速度が5または10mm/sであると判断した。
- (3)Ni系自溶合金とTiO₂の複層溶射を施したAl表面にレー ザ照射することで、表面から0.28mmの深さまで、硬さ430 HV を有する表面硬化層を形成することができた。
- (4)溶融部に割れが発生する場合があり,この原因究明と対策 が今後の課題である。

参考文献

- 松田福久他,アルミニウム材料のレーザによる表面改善,溶接学会全国大会講演概要,Vol.44 (1989) 176
- 2)中岡真哉他, CO₂レーザを用いたアルミニウムの表面合 金化(第1報),精密工学会北海道支部学術講演会論文集 (1994)99
- 3) 黒部淳他 各種アルミニウム合金の CO₂ レーザ光吸収 率,軽金属 Vol.38, No.8 (1988) 468
- 4)西村智也他,CO₂レーザによるアルミニウム材料の表面 改質,平成5年度北海道産学官共同研究報告書(1994)
 16
- レーザ学会編、レーザプロセシング、日経技術図書 (1990) 310
- 6)レーザアロイングによるアルミ合金の表面硬化処理,工 業技術連絡会譲第38回機械金属連合部会事例研究資料 (1993)
- 7) 李撥千他, プラズマアーク粉体肉盛法によるアルミニウ ム合金への硬化厚膜合金化層の形成(第1報),高温学会 誌, Vol.17, No.4 (1991) 177
- L. M. Mondolfo, Aluminium Alloys, Structure and Proprties, Butterworths (1976) 254