1.5 乾燥ナマコ輸出のための計画的生産技術の開発(外部資金活用研究費)

1.5.1 3次元画像解析と音響調査を用いた資源量推定技術の開発

担当者 調查研究部 桒原康裕

(1)目的

乾燥ナマコの計画的な生産を担保するため、適 切なナマコの資源管理上で最大の制限要因となっ ている資源量推定の困難さを克服する必要がある。

そのため,最新の画像解析技術であり陸上にお ける測量調査でその有効性が実証されている3次 元画像解析技術の海中目標への適用と得られた画 像の自動処理化によって迅速かつ正確に漁場にお けるナマコの分布やサイズを測定する技術を開発 する(網走水産試験場担当)。さらに音響測深技術 と GIS 技術を融合した海底地形図作成技術(µ CUBE)(はこだて未来大学,東京農業大学担当)を 応用し,従来手法では限界のあった複雑な地形や 大水深帯までを広くカバーする迅速で高精度なナ マコ資源量推定技術を開発する。

(2) 経過の概要

ア 3Dムーフィックス処理のための海底ビデオ 撮影技術開発

平成20年9月に雄武町沖マナマコ漁場内(図1) の水深5mから30mの範囲で100mライン14本の ビデオ撮影およびデジタル写真撮影を実施した。

ビデオ撮影は,カメラの移動速度を安定させる ため水中スクーターを使用し,1ラインのみ重複 撮影を試みたため,合計15ライン1500 mのビデ オ画像を撮影した。デジタル写真撮影は0.5m重 複を目安に101 枚/100mずつ,予備も含めて合計 1495 枚撮影した。同時に画像計測との比較を目的 としたナマコ潜水計数計測調査(1400m)を実施 した。

イ 画像からのマナマコ判別および計数法開発

ビデオ画像から作成する3Dムーフィックス画 像およびデジタル写真から,パソコンモニター上 で判別,計数を行い,潜水調査によるナマコ計数 値と比較した。同時に画像上での体長計測も実施 した。 得られた画像からの計数データと潜水計数デー タの分布型の特定および発見率と密度の関係,画

像上で確認可能な最小体長について分析した。

(3)得られた結果

ア 3Dムーフィックス処理のための海底ビデオ 撮影技術開発

雄武町沖マナマコ漁場内で100mビデオ撮影を 15 ライン実施し、1500m分のムーフィックス処理 画像を得た。1 ライン100m当たりのビデオ撮影 時間は3分、デジタル写真撮影時間は17分であっ た。

デジタル写真の利点は、ムーフィックス画像と 比較して高解像度であり(図2),市販の画像連結 プログラムにより自動連結可能である(図3は Kolor 社 Autopano による連結例)。

画像計測との比較を目的とした潜水計数調査 (1400m)の結果,311個体,平均密度は0.22個 体/m²(標準偏差0.57)であった。

水深 10mから 30m (マナマコ漁場)の8ライン での平均密度は 0.18 個体/m²(標準偏差 0.26),

図2 画像例 左:ムーフィックス画像 右:デジタル写真画像

図3 画像例 上:ムーフィックス画像 下:デジタル写真の連結画像

水深 10m以浅 (マナマコ漁場外) の6 ラインは 0.28 個体/㎡ (標準偏差 0.41) である。 ムーフィックス画像全体のマナマコ判別率は 0.61,判別率/100 ㎡の平均値は 0.59 (標準偏差 0.14, N=15),デジタル写真画像全体では 0.90, 判別率/100 ㎡の平均は 0.79(標準偏差 0.13, N=14) であり,判別率はデジタル写真>ムーフィックス 画像の関係にあった。

同一ライン上を2回撮影したムーフィックス画 像の場合(図4),22個体中14および17個体が 判別され,判別率/100㎡はそれぞれ0.64および 0.77となる。最終的に19個体が判別され,判別 率/100 m²は 0.86 まで向上し,同ラインのデジタ ル写真の判別率の 0.89 に匹敵する向上が見られた。

イ 画像からのマナマコ判別および計数法開発

潜水計数およびムーフィックス,デジタル写真 による密度(個体/10 m²)の頻度分布を図5に示 す。

これらの頻度分布にポアソン分布(ランダム分 布),負の二項分布(集中分布)を情報量基準最小 化によるモデル当てはめを行ったところ,最小 AIC,BICはともに負の二項分布であり,マナマコ 分布は集中分布であることを示している(表1)。

図4 ムーフィックス処理画像(A,B)および連結処理画像(C)識別されたマナマコは〇印で示した 上から判別率0.77,0.64,0.89 A,B両画像を合わせると0.86に判別率が向上した

図5 潜水計数,ムーフィックス画像およびデジタル写真画像による密度分布 左右の分布が調査手法と 対応している 左上:潜水計数(重複を含めて15ライン分) 右上:ムーフィックス画像 左下:潜水計 数(14 ライン分) 右下:デジタル写真

図6 マナマコの体長分布 白:判別個体 黒:未判別個体

頻度分布	理論分布	パラメータ		期待値	分散	情報量基準		
		Р	к	λ			AIC	BIC
潜水計数	負の二項分布	0.32	1		2. 10	6. 51	586.8	589.8
(15 ライン)	ポアソン分布			2.10	2. 10	2. 10	722. 4	725. 4
ムーフックス	負の二項分布	0.37	1		1. 71	4. 65	537.8	540. 7
	ポアソン分布			1.71	1. 71	1. 71	687.6	690. 7
潜水計数	負の二項分布	0.33	1		2.06	6.33	543. 9	546.8
(14 ライン)	ポアソン分布			2.06	2.06	2.06	631.5	634. 4
デジタル写真	負の二項分布	0.36	1		1. 81	5. 11	514.4	517.7
	ポアソン分布			1. 81	1. 81	1. 81	651.7	654.6

表1 各頻度分布にあてはめた理論分布,パラメータ,期待値,分散,情報量基準

推定された負の二項分布のパラメータは最尤解で あり,その期待値は負の二項分布の理論上の期待値 と一致している。

このことは、ムーフィックス、デジタル写真によ る密度推定においても、本来のマナマコの密度分布 が保存されることを示唆する。

画像データ分布 p(D)から画像上での判別率 d を介 在して,本来の分布 P(D)を推定する場合,判別率 d をパラメータとして P(D)=p(D;d)と表現する。

この場合,ホタテガイの桁網による資源量調査の

ように,漁獲効率を介在した標本漁獲調査法と等価 な方法と考えられる。

潜水調査で得られたマナマコの体長測定値より, 全体,判別,未判別個体の平均体長はそれぞれ 13.9cm (標準偏差 3.40),14.0cm (標準偏差 3.38), 13.2cm (標準偏差 3.43)であり,グループ間での有 意差はなかった。今回の調査では,判別個体の最小 個体の測定値を考慮すると,画像判別可能な最小サ イズは 7 cm であった。