育苗箱施肥を利用した水稲の減化学肥料栽培*

笛木 伸彦** 今野 一男*** 田中 英彦****

水稲の減化学肥料栽培の確立を目的とし、被覆屋根を用いた育苗箱施肥の問題点とその改善方法を検討した。育苗箱用に最適な被覆屋根肥料を、苗の生育に障害を与えないことと、本体移動後の窒素貯留が早期から始まったこと。LPSF(水温25℃条件下で30日間の窒素浮遊量が最小で、その後301日間で80%が浮遊することが示唆された)であった。LPSFによる全量含栄養素施設区の成分栄養素濃度収量応答曲線、栄養素効率でも全量施設区はほぼ同程度であったが、生育初期と同一期の栄養素収量比は劣る傾向にあった。一方、育苗箱施肥と側面施肥を組み合わせた区(以下、箱側面施設と略記)では、幼生形成期～出穂期までの栄養素収量が栄養素添加区でも全量施設区とほぼ同程度であった。箱側面施設区の栄養素濃度と栄養素収量の間には、1％水準で有意な負の相関があり、収量指数の100となった、すなわち栄養素濃度が25%と規定された。また約20%の栄養素濃度では、白米中直イタリウムは全量施設区のそれを下回る傾向が認められた。

以上のことから、北海道のような寒冷地において育苗箱施肥を導入する場合、生育初期の栄養不足を補うために側面施肥と組み合わせることが合理的であり、この組み合わせによる栄養素濃度は20%程度が適切であった。

1. 総 言

北海道における水稲の施設栽培は絶好調に肥料を散布し、さらに鉄土・人工土・代わりの土壤を用いる全層施肥が基盤としてきたが、全層施肥の基盤肥料の利用が面層施肥より高いものの、生育初期の養分供給が求められるため生長期は延長し、冷害防止等の必要性が高まる。また代わりの土壤や土壌改良材の不適当な施設区では、主に初期の生長の生長を目的として1958年発生させた1)、面層施肥は混ざり等により栄養素の確保が難しいことや、肥料成分が田面に流出する1)、初期生長の安

2000年7月31日受理
*本稿の一部は、2000年度日本土壌肥料化学分会東京大会(2000-4)で発表した。
**北海道立中央農業試験場栽培部(現，北海道立北海農業試験場)
***同上(現，北海道立北海農業試験場，069-196 長万部村字倫甲)
****同上(現，北海道立北海農業試験場，069-045 許呂町字検査所)
(1) 覆被果実酸素の窒素濃度試験

覆被果実酸素の窒素濃度試験の要領を以下に示す。

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料の窒素濃度を原子吸光光度計で測定した。

(2) 栄養吸収量の測定

栄養吸収量は以下の方法で測定した。

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料の窒素吸収量を原子吸光光度計で測定した。

(3) 資源効率のpH(H2O)とECの測定

資源効率のpH(H2O)とECの測定は以下の方法で行った。

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料のpH(H2O)とECを電気伝導度計で測定した。

(4) 紫外線吸収と紫外線感度の測定

紫外線吸収は以下の方法で測定した。

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料の紫外線吸収を紫外線吸収計で測定した。

① 覆被果実の窒素濃度試験

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料の窒素濃度を原子吸光光度計で測定した。

② 栄養吸収量の測定

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料の窒素吸収量を原子吸光光度計で測定した。

③ 資源効率のpH(H2O)とECの測定

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料のpH(H2O)とECを電気伝導度計で測定した。

④ 紫外線吸収と紫外線感度の測定

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料の紫外線吸収を紫外線吸収計で測定した。

① 覆被果実の窒素濃度試験

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料の窒素濃度を原子吸光光度計で測定した。

② 栄養吸収量の測定

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料の窒素吸収量を原子吸光光度計で測定した。

③ 資源効率のpH(H2O)とECの測定

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料のpH(H2O)とECを電気伝導度計で測定した。

④ 紫外線吸収と紫外線感度の測定

【試料の準備】
覆被果実をリードフードで86℃で乾燥し、その後100℃に移し、乾燥した試料を試験に供した。

【試験方法】
試料をヘリウムガスで吹き、その後窒素ガスで吹き、さらにヘリウムガスで吹き、最後に窒素ガスで吹き、このような操作を3回繰り返した。

【測定方法】
試料の紫外線吸収を紫外線吸収計で測定した。
３. 試験結果

１）被覆素養料の種類と苗の生育障害の有無

第２表には被覆素養料の種類と苗の生育障害の有無を示す。被覆素養料の苗の生育障害及び発育状況を示した。LPS60及LPS50を施用した場合では、苗の大部分が生育障害を示し、発育が劣った。これはLPS40及びLPS50までの雑草の発生が有効に抑えられており、LPS60及びLPS50の雑草の発生が宿満に抑えられず、のちに発生した。

２）被覆素養料（LPS60）の施用位置が苗の生育及び移植後の雑草収量に与える影響

第４表にはLPS60の施用位置の急を有する生育及び移植後の雑草収量に与える影響を示した。LPS60の施用位置の急を下に順に示し、移植した場合は苗の生育に支障はなかった。しかし、施用位置と植栽して施用した場合は植栽の位置がやや悪かった現象が認められた。

成株期の雑草収量は植栽の位置に従って施用した場合と、下に施用した場合とでは大差なかった。ただし、幼苗期

第２表 被覆素養料の施用位置と苗の生育障害

| 年次 | 施用位置 | 増地中における日平均温度（℃） | 被覆素養料からの雑草の発生割合 (%) | 苗の生育障害及ぼす発育

1996年	LPS60X	500	14.9	大部分に発生
1997年	LPS60X	500	2.2	なし
1998年	LPS60X	500	2.7	なし

*被覆素養料の施用位置は毎代あたり200g（苗栽植前30日）

第３表 苗の生育時の苗栽植のpHとEC（1996）

| 处理区 | pH（2.5） | EC (ms/cm)
| LPS60X | 3.1 | 0.73 |
| LPS60X | 3.5 | 0.25 |

*被覆素養料の施用位置は毎代あたり200g（苗栽植前30日）

第４表 LPS60の施用位置と苗の生育障害及び移植後の雑草収量

施用位置	苗の生育障害	露天栽培収量（kg/ha）	移植時の雑草収量（kg/ha）
植栽の上	なし	68	16
植栽の下	なし	65	18
増地	なし	70	13

*被覆素養料の施用位置は毎代あたり200g（苗栽植前30日）

**苗栽植からの生育及ぼす影響（苗栽植前30日）
４）全量施肥区および施条施肥区の窒素吸収量
第２図はLPS860の全量施肥区および施条区における
窒素吸収量の推移を示した。全量施肥区は対照区
に対して15～32％の窒素減肥率であるにもかかわらず、
成熟期までの窒素吸収量が3カ年を通じて対照区とほぼ
同程度であり、施条区は13％である。しかし幼
苗形成期～成熟期までの窒素吸収量についてみると、
1996年と1997年は全量施肥区の減肥率よりも低かった。
1998年では低かったが、1999年は特に低かった。

第２図 全量施肥区の窒素吸収量の推移（添え文字は施肥玉実用率）
*基N80は、育苗期の窒素施用量が80kg/haであることの証記。
*全N80は、全層の窒素施用量が80kg/haであることの証記。

第３図 施条施肥区の窒素吸収量の推移（添え文字は施肥玉実用率）
*施条80N80は、施条区の窒素施用量が80kg/haであることの証記。
*全N80は、全層の窒素施用量が80kg/haであることの証記。
5）窒素減蔵条件での全量育苗施設区および築・側条施
肥区の収量と玄米品質

第5表はP2560を供試した全量育苗施設区および築＋側条施肥による窒素減蔵区と対照区の収量、玄米質量を
示した。全量育苗施設区、1998年の収量指数が104
と対照区に優るもの。1996年および1997年で2年と差っ
た。また、白米中蛋白含有率（以下、蛋白と略）につ
いては対照区よりも3.5～6.7％高い、良質穂合
は1996年および1998年には対照区よりも3～4％高かったが、1997年には5％低下した。

第4図は築・側条施肥区の窒素減蔵区における収量の差
と蛋白の差を示した。窒素減蔵区の収量は対照区
と同程度であり、蛋白は対照区に近い値を示した。

第6図は築・側条施肥による窒素減蔵区の収量と蛋白の
差を示した。窒素減蔵区の収量は対照区に比べて14％と
低かった。蛋白は対照区に近い値を示した。

第5図は対照区における収量・蛋白の差を示した。窒
素減蔵区の収量は対照区に比べて15％と低かった。蛋白
は対照区に近い値を示した。

第6図は築・側条施肥区の窒素減蔵区における収量の差
と蛋白の差を示した。窒素減蔵区の収量は対照区
と同程度であり、蛋白は対照区に近い値を示した。

第4図は築・側条施肥による窒素減蔵区の収量と蛋白の
差を示した。窒素減蔵区の収量は対照区に比べて14％と
低かった。蛋白は対照区に近い値を示した。

第5図は対照区における収量・蛋白の差を示した。窒
素減蔵区の収量は対照区に比べて15％と低かった。蛋白
は対照区に近い値を示した。

第6図は築・側条施肥区の窒素減蔵区における収量の差
と蛋白の差を示した。窒素減蔵区の収量は対照区
と同程度であり、蛋白は対照区に近い値を示した。

第4図は築・側条施肥による窒素減蔵区の収量と蛋白の
差を示した。窒素減蔵区の収量は対照区に比べて14％と
低かった。蛋白は対照区に近い値を示した。

第5図は対照区における収量・蛋白の差を示した。窒
素減蔵区の収量は対照区に比べて15％と低かった。蛋白
は対照区に近い値を示した。

第6図は築・側条施肥区の窒素減蔵区における収量の差
と蛋白の差を示した。窒素減蔵区の収量は対照区
と同程度であり、蛋白は対照区に近い値を示した。

第4図は築・側条施肥による窒素減蔵区の収量と蛋白の
差を示した。窒素減蔵区の収量は対照区に比べて14％と
低かった。蛋白は対照区に近い値を示した。

第5図は対照区における収量・蛋白の差を示した。窒
素減蔵区の収量は対照区に比べて15％と低かった。蛋白
は対照区に近い値を示した。

第6図は築・側条施肥区の窒素減蔵区における収量の差
と蛋白の差を示した。窒素減蔵区の収量は対照区
と同程度であり、蛋白は対照区に近い値を示した。

第4図は築・側条施肥による窒素減蔵区の収量と蛋白の
差を示した。窒素減蔵区の収量は対照区に比べて14％と
低かった。蛋白は対照区に近い値を示した。

第5図は対照区における収量・蛋白の差を示した。窒
素減蔵区の収量は対照区に比べて15％と低かった。蛋白
は対照区に近い値を示した。

第6図は築・側条施肥区の窒素減蔵区における収量の差
と蛋白の差を示した。窒素減蔵区の収量は対照区
と同程度であり、蛋白は対照区に近い値を示した。

第4図は築・側条施肥による窒素減蔵区の収量と蛋白の
差を示した。窒素減蔵区の収量は対照区に比べて14％と
低かった。蛋白は対照区に近い値を示した。

第5図は対照区における収量・蛋白の差を示した。窒
素減蔵区の収量は対照区に比べて15％と低かった。蛋白
は対照区に近い値を示した。

第6図は築・側条施肥区の窒素減蔵区における収量の差
と蛋白の差を示した。窒素減蔵区の収量は対照区
と同程度であり、蛋白は対照区に近い値を示した。

第4図は築・側条施肥による窒素減蔵区の収量と蛋白の
差を示した。窒素減蔵区の収量は対照区に比べて14％と
低かった。蛋白は対照区に近い値を示した。

第5図は対照区における収量・蛋白の差を示した。窒
素減蔵区の収量は対照区に比べて15％と低かった。蛋白
は対照区に近い値を示した。

第6図は築・側条施肥区の窒素減蔵区における収量の差
と蛋白の差を示した。窒素減蔵区の収量は対照区
と同程度であり、蛋白は対照区に近い値を示した。

第4図は築・側条施肥による窒素減蔵区の収量と蛋白の
差を示した。窒素減蔵区の収量は対照区に比べて14％と
低かった。蛋白は対照区に近い値を示した。

第5図は対照区における収量・蛋白の差を示した。窒
素減蔵区の収量は対照区に比べて15％と低かった。蛋白
は対照区に近い値を示した。

第6図は築・側条施肥区の窒素減蔵区における収量の差
と蛋白の差を示した。窒素減蔵区の収量は対照区
と同程度であり、蛋白は対照区に近い値を示した。
4. 考察

育苗箱施設は水揚げ・波送りによって開発され、ついでに金田らによって開発した箱式育苗場での不規則振動のための実用技術として完成されたものである。この施設は

①大規模施設として受注が入る安定供給策であると、受注が安定する住友林業が座上げされ、生育が安定すること、③水揚げ振動を極力50%以下抑えること、④田植後の連続使用で、本州での栽培密度が不適とならため、心理的にもさらなる歩みが期待できるとそのことのほか

また、販売の生産現場では、1989年まで約30年の育苗率で、同数値に50%に迫るであろうと報告されてい

一方、育苗箱施設は無尿堆肥材からの初期原料の

水揚げ搬出を抑制しているために生産初期の発芽率が著しく

低いとの報告があり、またこの方法によって収穫期の

販売上方の収量が差されたため相対的に現状や、不規則

振動を導入した水揚げ施設はと対比されているものである。

北海道のような寒冷地では生産初期の栄養状態を安定し、

初期育苗を向上することが、収穫確保のためならず生産面

を考慮するため重要な問題である。したがって、育苗箱

施設の導入においては、販売上の支障が少なく、できる

だけ生産の影響が出ない無尿堆肥材を用いる必要がある。

本報告における育苗箱施設の結果、見落とし期間中に若葉の育

苗が発生しなかったためはLS901のみであり、これより

普通の型のLS700が多く、LS500が多く受け取られた

報告である。これにより、育苗箱施設はLS901、LS700

と、それぞれの栽培が多少異なるとの報告であった。す

くて、育苗施設の苗箱の栽培条件では、これが報告されている。

育苗箱施設の苗箱の栽培条件は、本試験の苗箱を用いた報告においては、普通の型のLS901が多く、 LS700が多く受け取られた報告である。これにより、育苗箱施設はLS901、LS700と、それぞれの栽培が多少異なるとの報告であった。す

くて、育苗箱施設の苗箱の栽培条件では、これが報告されている。
Improvement of nitrogen recovery rate using
Application of Fertilizer in Nursery Box
on Rice Culture in Hokkaido

Nobuhiko FUEKI*, Kazuo KONNO** and Hidchiko TANAKA***

Summary

The objective of this study is to develop the efficient nitrogen-fertilizing method for rice culture in Hokkaido. The merits and demerits of Application of Fertilizer in Nursery Box with coated urea(AFNB) were investigated, and the experiments to improve on the flaws were conducted.

LPS80 is the most suitable one in three types of coated urea(LPS40, LPS50, LPS80) because it did not damage nurseries. Since the release rate of the other two types was too quick for nurseries to be injured.

Although the amount of nitrogen was decreased, nitrogen uptakes of rice plants at AFNB plot was almost equal to control plot where fertilizer was mixed in upper 0-15cm layer. That showed the high efficiency of the fertilizing method. However, nitrogen uptakes at ear premordia stage were tend to be less than control plot.

At AFNB+SD plot which was combined AFNB and Side-Dressing (AFNB+SD) for promotion of nitrogen uptakes at early growth stage, although the amount of nitrogen was reduced, nitrogen uptakes at ear premordia stage and heading stage, were almost equal or more to control plot.

There was a negative correlation between the rate of the amount of nitrogen decreased at AFNB+SD plot and the relative yield rate ($r=-0.628$, $n=19$, $p<0.01$). From this relationship, when the rate of the amount of nitrogen decreased at AFNB+SD plot was 23%, the yield was almost equal to control plot. And if the amount of nitrogen decreased by about 20%, the rice protein content at AFNB+SD plot tended to be lower than control plot.

As the result of this experiment, the combined Application of Fertilizer in Nursery Box and Side-Dressing was judged to be a useful method of nitrogen fertilizing method. If the fertilizing method was conducted, both decrease of the amount of nitrogen and decline of rice protein content could be possible. The most suitable rate of the amount of nitrogen decreased was estimated at about 20%.

*Hokkaido Central Agricultural Experiment Station, Iwamizawa, Hokkaido, 069-0360
Japan(present; Hokkaido Prefectural Tokachi Agricultural Experiment Station, Memuro, Hokkaido, 082-0014 Japan)

**ibid(present; Hokkaido Prefectural Kitami Agricultural Experiment Station, Kusshara, Hokkaido, 099-166 Japan)

***ibid(present; Hokkaido Prefectural Central Agricultural Experiment Station Iwamizawa Branch, Iwamizawa, Hokkaido, 069-0365 Japan)