成績概要書（2009年1月作成）

研究課題：てんさいのアシグロハモグリバエ防除対策
（てんさいのアシグロハモグリバエ防除対策試験）

担当部署：中央農試 環境保全部 クリーン農業科、生産環境部 予察科
協力分担：胆振農業改良普及センター本所、同東胆振支所、㈱北海道糖業
予算区分：受託（民間）

研究期間：2007〜2008年度（平成19〜20年度）

１．目的 新規発生害虫アシグロハモグリバエの発生生態を明らかにし、てんさいにおける防除対策を確立する

２．方 法
（1）発生拡大過程
（2）気温と発育期間、低温条件下での蛹の生存期間の検討
（3）発生拡大経過
（4）効果的薬剤の探索と防除体系
（5）上記調査における幼虫による被害程度指数（葉あたり潜葉痕数）
 1:1〜3個、2:4〜10個、3:11個以上で計数可能、4:葉脈沿いに多数集中し計数不能

３．成果の概要
（1）アシグロハモグリバエは、平成20年秋現在で渡島、石狩、空知、後志、胆振、日高、十勝、網走支庁管内の38市町村において発生が確認されている。
（2）低温耐性の低い本種の越冬はビニールハウスなどの施設内に限られる（図1）。1世代の所要期間は、春季には80日近く、7〜8月には20日程度にまで短縮する（図2）。
（3）ハウス内においても、冬期間の世代交代はほとんど認められず、ハウス内の発生量は通常1〜2月、遅くとも3月上旬までには減少する。加温・無加温を問わず、ハウス内における春季の増加時期は4月下旬以降である。
（4）露地ほ場では、施設内で増殖した成虫の侵入により6月中旬以降発生が開始する。
 ほ場内で2世代経過した後の8月上旬以降に幼虫の被害が増加する（図6）。
（5）てんさい中位葉の被害程度が75程度に高まった場合、根重、糖分共に低下し、糖量で8%程度の減収となった。減収するのは被害程度で60を上回る場合と考えられた。
（6）被害株率、被害葉率と被害程度の関係から、被害程度が60を上回るのは被害株率、中位葉の被害葉率共に90%以上の状態と考えられた。
（7）アシグロハモグリバエに対して効果的な薬剤は、昆虫成長制御剤（IGR剤）、ネライストキシン系薬剤、その他系統などの薬剤に限られ、有機リン系、合成ピレスロイド系、ネオニコチノイド系薬剤の中に効果的なものは見いただされなかった。
（8）フルフェノクスロン乳剤4,000倍、ルフェヌロン乳剤3,000倍、ノバルロン乳剤3,000倍
 は、本種に対して被害抑制効果が認められた（表1）。
（9）てんさいにおけるアシグロハモグリバエ防除開始は7月中旬を基本とし（図3）、ほ場
 内で幼虫被害が増加し始める8月上旬までの7月中旬〜8月上旬（図4,5）が重点防除時期と結論づけられる（図6）。
 この期間のIGR剤10日間隔2〜3回散布により、無防除での被害程度48のほ場で、被害程度を9.5〜16.0に止めることができた。
（10）てんさいでは、IGR剤のフルフェノクスロン乳剤、ルフェヌロン乳剤、ノバルロン乳剤
 などをヨトウガ1回目産卵期、2回目幼虫発生前（7月中旬以降）に散布した場合、ヨト
 ウガ1、2回目幼虫に対してそれぞれ高い防除効果がある。これにより、アシグロハモ
 グリバエとヨトウガの効率的な防除が可能である。
4. 成果の活用面と留意点
(1) 本成績は、アシグロハモグリバエ既発生地における対策に活用する。未発生地では、侵入・発生時の対応が遅れないよう、早期発見に努める。
(2) 施設内での越冬個体群の密度増加抑制にあたっては、平成15年度発生予察情報特殊報第1号、平成19年度指導参考事項「平成18年の発生にかんがみ注意すべき病害虫」を参考にすること。
(3) IGR剤を散布した場合でも、ヨトウガの被害が進展した場合には追加防除を実施する。

5. 残された問題とその対応
(1) 本種発生量に応じた適正な防除間隔・回数、多発生時の追加防除要否の検討
(2) 越冬場所となる施設内を含む野菜類における防除対策の確立