木材のフィンガー切削について(第3報)

一研究一

ー工具切れ刃の摩耗量、フィンガー形状の加工精度 などに及ぼす送り速度の影響-

金森勝義千野昭 若井 実*

Finger Milling of Wood (III)

--Effects of feed upon cutting edge wear and machining precision, etc---

Katsuyoshi KANAMORI Akira CHINO Minoru WAKAI

The present studies aim to find out conditions for proper cutting with mini-finger cutters and estimative standards for grinding the cutters. Thus the profiles of the edge wear after the total cutting length of the boards were observed and the amount of the edge wear was observed. Then studies were made on the relations of the cutting length or the amount of edge wear to the net cutting power, to the surface waves of the machined finger tips, and to the precision of machining.

The cutting equipment was a movable type, and up-milling was adopted as a cutting method. The cutting tools were a wing type of solid milling cutters made of a high speed steel (SKH9). Workpieces used in the tests to examine the wear of the cutting edge were taken from Mizunara, *Quercus crispula* BL., which had a specific gravity of 0.72 in air dry, a moisture content of 14 percent, and an average ring width of 1.6mm. To examine the machining precision, workpieces were taken from Mizunara, Katsura and Makanba. At the beginning of the tests, those workpieces had a finger shape which was 10mm long and had a pitch of 4mm and a top width of 0.5mm. The results of the tests are summarized as follows:

(1) The proper feed speed was found to be 3.43m/min, that is when the cutting tools had two effective knives, the feed per knife was get to be about 1.0mm. The practical feed speed, however, was estimated to be within a little larger range including that value, because in the experiments feeding was performed according to only three speed variations and there was no previous finger milling.

(2) Taking the machining precision and the quality of the machined surface into consideration, it was recognized that when feeding was performed at the proper speed the main spindle of cutters should be ground after the edge wear, Rf+ Wf, amounted to 110 μ m.

〔林産試場報 Vol. 1, No. 3, 1987〕

本報告では、ミニフィンガーカッタ刃による適正切削条件と同刃の再研摩のための判断基準を 得るために、カッタ主軸の回転数を毎分1800回転の一定、送り速度を毎分2.24m、3.43m及び 10.30mの3水準とし、総切削材長に伴う工具切れ刃の摩耗形態と摩耗量について観察と測定を 行うとともに、総切削材長あるいは工具切れ刃の摩耗量と切削抵抗、切削されたスカーフ部分の 被削面の性状ならびにフィンガー形状の加工精度との関係について検討した。

切削装置は工具移動タイプのものであり、切削方式はUp millingとした。供試切削工具は高速度鋼(SKH9,JIS G4403)製ウィングタイプのソリッドミリングカッタとした。被削材にはミズナラ材(気乾比重0.72,含水率14%,平均年輪幅1.6mm)を用い,所定の総切削材長ごとに加工精度や切削抵抗などを測定するための供試材としては,あらかじめ用意しておいたミズナラ材(気乾比重0.66,含水率14%,平均年輪幅1.6mm)のほかに,カツラ材(気乾比重0.44,含水率12%,平均年輪幅1.0mm)とマカンバ材(気乾比重0.65,含水率11%,平均年輪幅1.4 mm)を用いた。実験開始時のフィンガー形状は,長さ10mm,先端幅0.5mm,かん合度0.1mm,ピッチ4mmとした。得られた結果等を要約すると,以下のとおりである。

(1) 適正と考えられる送り速度は,3.43m/min(切削工具の有効刃を2枚刃としたときの1 刃当たり送り量は,約1.0mmとなる。)の条件であった。ただし,本試験では送り速度が3水準 だけであり,予備切削を行っていないことから,実用的と考えられる送り速度は,この値を含め たやや広い範囲で示されると考えられる。

(2)適正と考えられる送り速度における切削工具の再研摩は,加工精度や被削面の性状などから総合的に判断すると,外周切れ刃のすくい面上に投影した刃先後退量と摩耗幅を合わせた値が約110µmに達した時点と考えられる。また,この時点における側面切れ刃のすくい面上に投影した刃先後退量と摩耗幅を合わせた値は,約50µmであった。

1. はじめに

チッピングや欠損などの工具損傷は別として,工具 切れ刃の摩耗によるフィンガーカッタ刃の再研摩の目 安を得るためには,その前提として適正な切削条件を 把握しておく必要がある。また,フィンガーカッタ刃 には,前報1)でも一部触れたように,丸のこ歯と同じ ように2つの工具切れ刃を有するが,同刃による切削 では丸のこ歯による切削とは異なるいくつかの特徴 を持っている。例えば超硬チップソーの場合,のこ歯 の側面切れ刃による切り込み量と切削幅は約0.1mm と極めて小さい2,のこびきされた材面(きょ断面) は,直接的にはのこ歯先の側面切削によって形成され るが,実際には切り込み量と切削面積がともに極めて 小さな値であるために前面切削(本報告では,丸のこ 歯の前面切削に対応するフィンガーカッタ刃の場合の 切削用語として外周切削と呼んでいる。)の影響も無 視できない)。これに対し,フィンガーカッタ刃の側 面切れ刃の切削幅は,フィンガーチップのスカーフ面 を形成することから,外周切れ刃の同値の約15倍以上 も大きい。したがって,側面切れ刃の摩耗量あるいは 摩耗形態はフィンガー形状の加工精度や被削面の性状 に直接影響を及ぼすことになる。

本研究は,このようなフィンガーカッタ刃による切 削の特徴を踏まえながら,適正切削条件を把握すると ともに,切削工具の再研摩のための判断基準を得るこ とを目的としている。そこで,本実験では主軸回転数 を一定とし,切削工具の送り速度,すなわち一刃当た り送り量を3水準としたときの総切削材長(供試材の 幅にカッタ主軸の送り回数を乗じた長さ)あるいは切 削長(外周切れ刃一刃の1回の切削における切削孤長 の総和)に伴う工具切れ刃の摩耗形態と摩耗量を調べ た。と同時に,総切削材長あるいは工具切れ刃の摩耗 量と切削抵抗,切削されたフィンガーチップのスカー フ面における被削面の性状ならびにフィンガー形状の 加工精度との関係についても調べた。

2.実験

2.1 切削装置と供試材

切削装置は被削材を固定し,切削工具を油圧シリン ダーで移動させる方式のものであり、前報¹⁾と同じも

[J. Hokkaido For. Prod. Res. Inst. Vol.1. No.3. 1987]

-2-

のである。本試験では各切削条件ごとに厚さ20mm, 幅100mm, 長さ約1mの被削材を総切削材長500m

(送り速度3.43m/minの切削条件では800m)まで 切削し,この間の工具切れ刃の摩耗について調べた。 被削材はミズナラ材とし,この気乾比重,含水率,平 均年輪幅の平均値はそれぞれ0.72,14%,1.6mmで ある。

所定の総切削材長ごとにフィンガー形状の加工精度 や切削抵抗などを測定するための供試材としては、あ らかじめ用意しておいた厚さ20mm,幅150mm,長 さ約1.5mのミズナラ材(気乾比重0.66,含水率14%, 平均年輪幅1.4mm)のほかに、同じ寸法のカツラ材 (気乾比重0.44,含水率12%,平均年輪幅1.0mm)と

マカンバ材(気乾比重0.65, 含水率11%, 平均年輪幅 1.4mm)を用いた。これら3樹種の供試材はすべて 板目板とし,切削工具の送り方向は供試材の繊維方向 に対してすべて垂直となるようにした。したがって, 切削されたフィンガーチップのスカーフ面には,供試 材の木端面にフィンガー形状が見える水平(H)型の 縦つぎを想定しているので,板目が現れることになる。

2.2 供試切削工具と切削条件

実験に供した切削工具は、第1図に示すように、木 村刃物㈱製ウィングタイプの高速度鋼SKH9による ソリッドミリングカッタであり、外周切れ刃の稜線の

Fig. 1 Illustration of tested tool

[林産試場報 Vol.1 No.3 1987]

直後から曲線の二番取りをしたものである。実験では 供試工具3枚を二枚刃となるように重ね合わせて使用 した。これらの切削工具は、各切削条件のたびに研摩 して繰り返し使用した。研摩は、WA60のカップ型磁 石で研削量に注意しながら荒研削したのち、油砥石と 水砥石で大きなまくれがなくなるまで顕微鏡下で観察 しながら仕上げ研削を行った。なお、仕上げ研削を終 えた供試切削工具は、別途用意したミズナラ材を切削 材長10mのならし切削を行ったのち、実験に供した。

次に、本実験の切削条件は、主軸回転数を毎分1800 回転(切削工具最外周の切削速度15.07m/sec)の 一定とし、切削工具の送り速度を毎分2.24m、3.43 mならびに10.30m(切削工具の有効刃を2枚とした ときの一刃当たり送り量に換算すると、0.6mm、1.0 mm、2.9mm)の3水準とした。切削方式は、Upmillingとした。

2.3 工具切れ刃の摩耗形態の観察と摩耗量の測定

摩耗形態は、切削工具のすくい面及び側面切れ刃の 逃げ面側を日本光学工業㈱製6C型の万能投影器で20 ~100倍に拡大して観察した。

次に工具切れ刃の摩耗量は、第2図に示すように、 外周切れ刃ではすくい面に投影した中心線上の刃先後 退量Rfと摩耗幅Wfならびに逃げ面に投影した刃先 後退量R₀と摩耗幅W₀を測定した。また、側面切れ 刃では仮想切尖(外周切れ刃のすくい面と逃げ面から 仮想線をのばした両線の交点)から切削工具のすく い面上を中心に向かって3mm進んだ位置におけるす くい面と逃げ面に投影した摩耗量Wr とWo を測定し た。なお、3mmとした理由は、本実験の切削条件に おける外周切れ刃とこれに連続する2つの側面切れ刃 による切り込み量の最大値(近似式⁵⁾による計算値) が約1.4mmであることから、この位置の工具切れ刃 の摩耗は側面切れ刃のみにかかわるものと考えられ るためである。ただし、側面切れ刃のすくい面と逃 げ面に投影した刃先後退量については0.01mm以下と 極めて小さいため、本実験ではWr とWo の両値に含 めて測定した。以上の摩耗量(刃先後退量及び摩耗 幅)は、万能投影器で100倍に拡大し、R₀とW₀を

第2図 工具切れ刃の摩耗量(R_f,W_f,W_f',R_c,W_c, W_c')

Fig. 2 Measured amounts of edge wear $(R_f, W_f, W_f', R_c, W_c, W_c')$

除いて精度0.01mmの微動載物台の移動量から求め、 各切削工具につき2箇所の計6箇所の平均値で表した。 R_fは、万能投影器や垂直反射照明が切削工具のすく い面に対して垂直に当たるように固定用治具を用い、 あらかじめすくい面に付けた超硬刃による圧痕を基準 点として求めた。W_fは、万能投影器の投影レンズに 内蔵している半透過鏡の垂直反射照明と透過照明から 黒く影となった部分の幅から求めた。R_c, W_c及び W。は、直接これらを測定することが困難なため、摩 耗形態をいったんトレーシングペーパーにトレースし てから、これらの値を求めた。したがって、これらの 測定にあたっては、ある程度の測定誤差を含むため、 本実験では実験開始時と終了時のみの値を測定した。 なお、R_cとW_cの測定にあたっては、側面切れ刃の にげ面が垂直反射照明の光軸に対して極力垂直に位置 するように切削工具をセットした。W₄,は、2つの側 面切れ刃について、それぞれのすくい面に投影した摩 耗幅の和として求めた。

2.4 切削抵抗,転がり円最大うねり及び加工精度の測定

これらの測定は、前報¹⁾ とほぼ同じ方法で行った。 切削抵抗としては、切削抵抗と切削速度の積で表され る切削所要動力を測定した。切削されたスカーフ面 (被削面)の性状として、本実験では切削工具の送り 方向に対して平行な方向の転がり円最大うねりWEM をJIS B 0610に準拠して測定した。WEMは、カツ ラ材のみの供試材3枚のうち2枚について測定した。 この測定にあたっては、**第3図**に示すように、予備実 験によって測定値のバラツキが少なかった各供試材の 中央部から試験片を採取した。そして、所定のフィン ガーチップのスカーフ面について3箇所の計6箇所の WEMを測定し、その平均値を求めた。

加工精度は、各樹種の供試材の中の1枚について、 第3図のWEMと同様の試験片からフィンガーチップ の先端幅t₁、底部幅t₂などを万能投影器の傾斜反射照 明を使って20倍に拡大し、微動載物台の移動量から求 めた。なお、t₁とt₂は試験片の幅方向の中心線上から

Fig. 3 Test specimen for surface waves (W_{EM}, JIS B 0610) and machining precision

求めるとともに,この中央線の左右5mmにおけるt₁ とt₂の見掛けの最大値をt₁ とt₂ として求めた。切 削されるフィンガーチップの長さは,外周切れ刃の摩 耗によって切削工具の回転半径が小さくなる⁴⁾ことか ら,短くなることが予想される。しかし,本実験では 所定の総切削材長ごとにフィンガーカッタを取りはず すことによる取り付け誤差を考慮し,これを測定しな かった。

2.5 切り屑の観察

工具切れ刃の摩耗に伴って排出される供試材の切り 屑の形状を肉眼で観察した。

- 3.結果と考察
- 3.1 工具切れ刃の摩耗形態

第4図は,実験終了時の工具切れ刃の摩耗形態をす くい面側からトレースした一例である。ただし,実験 開始時の外周及び側面切れ刃の両切れ刃線は数µm程 度の凸凹を有するが,この図ではいずれも直線とみな している。外周切れ刃の刃先後退量Rfと摩耗幅Wf は,切れ刃線上の位置によって異なり,最大で30µm の違いが認められた。外周切れ刃の摩耗パターンにつ いては,この図のように実験開始時の切れ刃線にほぼ 平行に摩耗するもののほかに,中央部が凹状に摩耗す るものも観察された。一方,側面切れ刃の摩耗につ いてみると,10µm以下の刃先後退量を含めた摩耗幅

[林産試器報 Vol.1.No.3.1987]

第5図 工具切れ刃の摩耗形態の一例 Flg.5 An example of profile of edge wear F, L:第4図参照 Refer to Fig.4

W_f は仮想切尖からある距離だけ供試切削工具の中心 へ向かった位置を境として広くなった。摩耗幅W_f の 広くなる位置は,近似式⁵⁾から求まる外周切れ刃とこ れに連続する2つの側面切れ刃にかかわる切り込み量 の最大値と同等若しくはやや大きいところであった。

第2回は,実験終了時の工具切れ刃の摩耗形態を供 試切削工具の側面 (側面切れ刃の逃げ面)側からトレー スした一例である。側面切れ刃の逃げ面に投影した 摩耗幅%。はすくい面側から観察したときと同じ位置 から広くなり,実験終了時におけるW。の広い方の値 は各切削条件とも狭い方の約2倍の20~30 µmであっ た。また, W。の広い方の値は, 側面切れ刃のすくい 面に投影した摩耗幅Wfの約半分にほぼ等しかった。 一方,実験終了時における外周切れ刃の逃げ面に投影 した刃先後退量と摩耗幅を合わせた値R。+W。は, 送り速度によって異なる値を示した。すなわち,この 値は,送り速度が毎分2.24mでは実験終了時における 同切れ刃のすくい面に投影した刃先後退量と摩耗幅を 合わせた値R_f+W_fにほぼ等しく,送り速度が毎分 3.43mと10.30mではR_f+W_fの値よりもやや小さ かった。なおフィンガーカッタ刃の再研摩では通常す くい面のみを研削することから,R_f+W_fの値は研 削量を決定する重要な数値となる。

3.2 総切削材長,切削長と工具切れ刃の摩耗量の 関係

第6図は,総切削材長 Lに伴う外周切れ刃のす くい面に投影した刃先後退量R_fと摩耗幅W_fの関係 を示したものである。工具切れ刃の摩耗の進行は, R_f,W_fとも送り速度が遅いほど速くなる傾向を示

-5-

第6図 総切削材長 (ΣL) と摩耗量 (Rf,Wf) Fig. 6 Relation of total length of tested board cut(ΣL) to amount of edge wear (Rf,Wf)

した。ただし、送り速度が毎分2.24mのW_fについて は、実験初期にはほかの切削条件よりもやや小さな値 を示し、その後は摩耗の進行が最も速くなった。これ は、実験初期には送り速度が遅いと切り込み量も小 さいことから摩耗の進行も遅く、その後は*S*Lが長 くなると切削長ZPが長くなることから摩耗の進行も 速くなるためと考えられる。また、速度が3.43mと 10.30mの切削条件におけるR_fとW_fの摩耗の進行に は、既往の文献。のように、お互いに一定の比例関係 (単相関係数は、すべて0.99であった。)を保ってい ることが分かった。ただし、送り速度が2.24mの切削 条件におけるR_fとW_fの摩耗の進行にも比例関係が 認められ、この単相関係数は0.97であった。したがっ て、以下の本文では、外周切れ刃の摩耗量は後述の $W_{f'}$ に対する便宜上の値として R_{f} と W_{f} を合計した 値R_f+W_fを用いることとした。

第7図は、切削長ΣPとR_f+W_fの関係を示した ものである。ΣPは、次式⁶から求めた。

 $\Sigma P = (\Sigma L/f_z) \cdot I$

ただし、 Σ Lは総切削材長、 f_z は1刃当たり送り量 ($f_z = F/(N \cdot n)$, F:送り速度、N:主軸回転数、 n:刃数)ならびに1は外周切れ刃1刃の1回の切削 における切削孤長($I = \sqrt{(d \cdot D)}$, d:切削深さ、 D:切削工具の直径)である。 $R_f + W_f$ の値は、 Σ Pが約5kmを超えると、これまでの関係が逆転し、送

第7図 切削長 (SP) と摩耗量 (Rf+Wf) Fig. 7 Relation of cutting length(SP) to amount of edge wear (Rf+Wf)

り速度2.24m/minの切削条件が高くなる傾向を示した。

第8図は、ΣPと2つの側面切れ刃におけるすくい 面摩耗幅W_f'(ただし、この摩耗幅は刃先後退量も含 めた値である。)の関係を示したものである。ΣPが 2km付近までは送り速度によるW_f'の差はわずかで あるが、その後の両者の関係は送り速度の遅い方が摩 耗の進行が遅かった。以上の結果から、本試験におい て適正と考えられる送り速度は、3.43m/minであっ た。ただし、本試験の送り速度の水準は3つだけであ り、しかも予備切削⁵⁰ を行っていないことなどから、

第8図 切削長 (SP)と摩耗量 (Wf^{*}) Fig. 8 Relation of cutting length(SP) to amount of edge wear(Wf^{*}) 記号;第7図参照 Marks; Refer to Fig. 7

[J. Hokkaido For. Prod. Res. Inst. Vol. 1, No. 3, 1987]

第9図 摩耗量(Rf+Wf,Wf')と切削所要動力 Fig. 9 Relation of amount of edge wear (Rf+Wf,Wf') to net cutting power

実用的な送り速度は3.43m/minの値を含めたもう少 し広い範囲で示されると考えられる。なお、切削工具 のすくい面上に投影した刃先後退量と摩耗幅を合わせ た摩耗量は、総切削材に伴って外周切れ刃の値R_f+

W_fの方が側面切れ刃の値W_f,より も約2~3倍大きくなる傾向を示し た。また、周刃フライス削り⁶⁾やト レパニング方式の旋削⁷⁾では工具切 れ刃の逃げ面とすくい面にそれぞれ 投影した摩耗量の比率は2対1と報 告されているが、本試験では両者と もほぼ同程度の摩耗量を示した。こ れは切削方式や測定誤差のほかに、 供試切削工具の刃型の形状も影響し ていると考えられる。

 3.3 工具切れ刃の摩耗量と切削 抵抗,転がり円最大うねり の関係

第9図は、工具切れ刃の摩耗量 R_f+W_fならびにW_fと切削所要

〔林産試場報 Vol. 1, No. 3, 1987〕

記号;第9図参照 Marks; Refer to Fig. 9

動力の関係を示したものである。いずれの切削条件と も、切削所要動力は両者の摩耗量が大きくなるにつれ て増加したのち、漸増もしくは平衝状態になる傾向を

-7-

示した。外周及び側面切れ刃の摩耗に伴う切削所要動 カの増加の割合をみてみると,いずれも切削条件によ る顕著な差は認められなかった。この傾向はミズナラ 材以外のカツラ材とマカンバ材でもほぼ同様であった。

第10図は、工具切れ刃の摩耗量R_f+W_fならびに W_f,と切削されたフィンガーチップのスカーフ面にお ける転がり円最大うねりWEMの関係を示したもので ある。送り速度が毎分3.43mの切削条件では、ふたつ の摩耗量の増大に伴うWEMの増加の割合はほかの切削 条件よりも緩やかであった。

3.4 総切削材長及び工具切れ刃の摩耗量と加工精 度の関係

第11図は、3樹種の被削材について総切削材長と加 工精度の各測定項目との関係について示したものであ る。ただし、加工精度の各測定値については、すべて 実験開始時の値に対する増減で表している。カツラ材 では、先端幅t₁が徐々に太くなるために、かん合度t₁ ーt₂がだんだんきつくなった。マカンバ材では、かん 合度等の変化が小さく、工具切れ刃の摩耗がある程 度進行するとすべての測定値の変化が大きくなった。 ミズナラ材では、道管径が大きいために、先端幅と

Fig.12 Relation of amount of edge wear (Rf+Wf,Wf') to difference between t1 and t2 記号; 第9図参照 Marks; Refer to Fig. 9

底部幅におけるそれぞれの見掛けの最大値との差値 $t_{1'} - t_1 \ge t_{2'} - t_2$ がある程度摩耗すると急に大きく なった。各供試樹種による加工精度の差異は、ほかの 切削条件においてもおおむね同様の傾向を示した。 **第12図**は、カツラ材について $R_f + W_f$ ならびに $W_{f'}$

写真 切り屑の形状(ミズナラ) Photo. Forms of cut chips(MIZUNARA)

[J. Hokkaido For. Prod. Res. Inst. Vol. 1, No. 3, 1987]

-8-

とかん合皮の関係を示したものである。適正な送り速 度と考えられた3.43m/minの切削条件では、 R_f + W_f の値が約110 μ m, W_f , の値が約50 μ mを超える と、かん合度が急激にきつくなる傾向を示した。これ らの摩耗量は、被削材がカツラ材以外のものについて は必ずしも適用できないが、フィンガーカッタの再研 摩のための一つの目安になると考えられる。

3.5 切削条件と切り屑の形状

写真は、各切削条件ごとに実験開始時ならびに終了 時の切り屑の形状をミズナラ材を例に示したものであ る。カツラ材の切り屑の形状については、ほかの2樹 種と異なり、ほとんどが細かく破砕されたものであっ た。これらの切り屑は、扇形のものを半分に折り重ね た形状であることから、おもに側面切れ刃によって生 成されたものと考えられる。なお、外周切れ刃とこれ に連続する側面切れ刃によって生成される切り屑の形 状は,近似式5)から求まる本試験の切り込み量の最大 値が1.4mmであり、切削幅がフィンガーカッタ刃の 先端幅にほぼ等しいことから、極めて小さなものと考 えられる。おもに側面切れ刃によって切削されると考 えられる切り屑の形状は、送り速度が速いほど厚さが 増すとともに、らせん状を呈しやすくなる傾向が観察 された。また、実験終了時の切り屑の形状は、送り速 度が毎分2.24mと3.43mでは実験開始時よりもやや細 かくなったが、送り速度が毎分10.30mでは実験開始 後まもなく細かく破砕されたものが多量に観察された。

4. まとめ

本実験では、カッタ主軸の回転数を毎分1800回転の 一定とし、送り速度を3水準(2.24、3.43、10.30m/ min)としたときの総切削材長あるいは切削長に伴う 工具切れ刃の摩耗形態及び摩耗量を観察及び測定した。 また、同時に工具切れ刃の摩耗量とフィンガーチップ のスカーフ面における被削面の性状、フィンガー形状 の加工精度などについても測定した。この結果、適正 と考えられる送り速度は、3.34m/min(供試切削工 具の有効刃を2枚としたときの一刃当たり送り量1.0 mm)であった。ただし、本実験の送り速度は3水準

[林産試場報 Vol. 1, No. 3, 1987]

のみであり,予備切削⁵⁾を行っていないことから,実 用的な送り速度は,3.43m/minを含めたもう少し広 い範囲で示されると考えられる。なお,適正切削条件と しては送り速度のほかに切削速度についても取りあげる 必要があるが,これについては今後検討する予定である。

次に、切削工具の交換時期の目安については、外周 切れ刃のすくい面上に投影した刃先後退量R_f及び摩 耗幅W_fがそれぞれ約55µmに達した時点と考えられ る。また、この時点は、側面切れ刃のすくい面上に 投影した刃先後退量と摩耗幅を合わせた値W_f,が約50 µmに達したときであり、外周切れ刃の逃げ面上に投 影した刃先後退量と摩耗幅を合わせた値R_c+W_cが 100µm前後に達したときと推定される。なお、周刃 フライス削り⁶⁾やトレパニング方式の旋削⁷⁾の場合、 工具切れ刃の逃げ面上に投影した摩耗量とすくい面上 に投影した摩耗量との比率はほぼ2対1と報告されて いるが、本実験では両者ともほぼ同じ摩耗量を示した。 これは測定誤差のほかに、供試切削工具が外周切れ刃 の稜線の直後から曲線の二番取りをしたものであるこ とも影響していると考えられる。

文 献

- 1) 金森勝義ほか2名:林産試場報1,2,11 (1987)
- 2) 福井 尚:木材工業, 21, 1, 20 (1966)
- 3) 同上 : 同上, 21, 2, 15 (1966)
- 4) 林 和男:木材学会誌, 26, 7, 457 (1980)
- 5) 金森勝義,千野昭:林産試月報;408,11 (1986)
- 6)福井 尚, 横地秀行:木材学会誌, 23, 3, 131
 ~137 (1977)
- 7) Tanaka, C., ほか2名:木材学会誌, 32, 2, 99 (1986)