- 研究要旨 -

有機溶媒・水混合溶媒による木材の カルボキシメチル化

本間千晶 中野降人*

Carboxymethylation of Wood in Organic Solvent-Water Reaction Media

Sensho HONMA Takato NAKANO

Studies were made on the effects of solvents on carboxymethylation of wood in various organic solvent-water solutions containing sodium hydroxide (NaOH) and sodium monochloroacetate (CICH₂COONa). The amounts of introduced carboxymethyl groups were evaluated from the absorbance ratios of infrared spectra. It was found that dimethylsulfoxide (DMSO), hexamethylphosphorictriamide, 1, 1, 3, 3,-tetramethylurea and N-methylacetamide can be used as solvents of carboxymethylation. Also by studying reactions in a mixture of DMSO and water, it was found that the optimum condition was obtained when the molar ratio of NaOH to CICH₂COONa is 1:1, and that of DMSO to water. is 7:3.

水酸化ナトリウム(NaOH)とモノクロル酢酸ナトリウム(CICH₂COONa)をカルボキシメチル(CM)化剤として含む各種水混合溶媒を用いて,木材へのCM基導入反応に対する溶媒および反応条件の影響について検討した。使用した溶媒は水と6種の有機溶媒[ジメチルスルホキシド(DMSO),テトラメチル尿素(TMU),ジメチルホルムアミド(DMF),ジメチルアセトアミド(DMAC),ヘキサメチルホスホリックトリアミド(HMPA),N-メチルアセトアミド(MAC)]の混合物である。これらのうちDMSO,HMPA,TMU,MACを用いた場合にCM基が導入された。さらにDMSO・水混合溶媒を用いて最適条件を検討した結果,NaOH/CICH₂COONa=1/1の時置換度が最大値をとり,等モル原則がほぼ成り立つこと,DMSO/水=7/3の比率において最大値をとることが判明した。

1.はじめに

セルロースのCM化反応は一般に高アルカリ濃度で行われており,木材にこれを適用した場合,材の著しい変形が避けられなかった。このことは,ブロック状木材のCM化法としては適さないことを意味する。しかし,既報¹⁾において,エタノール・水混合溶媒を

用いることによって,低アルカリ濃度での木材のCM 化が可能であることを報告した。

セルロースのCM化については,早川等が,エタノール以外に,アセトン,ベンゼン,イソプロパノールと水との混合溶媒を用いた例を報告している²⁾。しかしこれらの方法は,いずれも高アルカリ濃度での反応で

[林産武器 第7巻 第3号]

あることや, 多段反応であることからブロック状の木 材には適用できない。ブロック木材を用いて反応を行 う場合,エタノール同様,CM化剤存在下で,水とよ く混合する溶媒を選択することが必要である。本報で は,前報の結果を踏まえてエタノール以外の極性溶媒 を用いたCM化反応を試み,溶媒の性状の相違が,反 応に及ぼす影響について考察した。

なお,本報告は第41回日本木材学会大会における発 表内容の要旨である。

2.実験

2.1 試料

供試材として0.1(L)×7(R)×1(T)(m)の 形状のシナノキ (Tilia japonica Simk,) を使用した。 2.2 CM化処理

溶媒として, DMSO, TMU, DMF, DMAc, HMPA, MAc を用いた。CM化剤は,所定モル比率の NaOH / CICH₂COONaを,上記溶媒と蒸溜水を所定比 率に混合した混合液に溶解し,調製した。

CM化処理は以下の手順で行った。CM化剤を試片 に減圧注入し,30分間浸漬した。その後容器を密栓し ウォーターバス中で,60,2時間反応させた。反応 終了後5%酢酸水溶液中で洗浄した後,蒸溜水で十分

洗浄し,105てこで24時間減圧乾燥した。なお,CICH₂ COONaの代わりに酢酸ナトリウム (CH₃COONa)を 用いて同様の処理工程を経たものをコントロールとし た。

2.3 金属塩処理

金属塩処理は次の手順で行った3)。105 で,24時 間減圧乾燥したCM化処理試料を,1.0mol/I酢酸 亜鉛(zn(oAc)₂)水溶液中に浸漬し,約30分間減圧 注入した後,25 の恒温水槽中で1時間反応させた。 反応終了後十分水洗し,乾燥したものを試料とした。

2.4 CM基の確認と定量

CM基の確認は,赤外分光光度計を使用し,CM化 木材及び金属塩処理したCM化木材の特性バンドの吸 収強度の変化によった。すなわち,CM基導入による カルボニル基 (>C=0) に基づく1735 cm⁻¹の吸収 強度の変化,およびZn(OAc)2処理後のカルポキシレ ート (-000) に基づく1595cm⁻¹の吸収強度から評 価した。赤外(IR)スペクトルの測定は,KBr錠剤 法により常法に従い行った。

CM基導入量は、IRスペクトルからリグニンのベ ンゼン環の吸収に帰属される1505cm - 1と1595cm - 1と の吸光度比り₁₈₈₆/D₁₈₈₆を算出し,間接的に定量した。

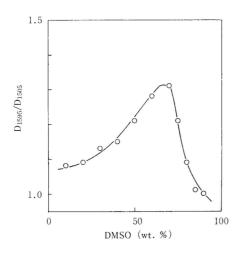
第1表 使用溶媒による木材へのカルボキシメチル基導入量の相違 (IR**吸光度比**D1735 / D1505 , D1595 / D1505**の変化**)

Table 1. Effects of the various solvents on the absorbance ratios of D1735 or D1595 to D1505

使用溶媒 solvents	Concentrations of solvents (wt.%)	D_{1735}/D_{1505}		D_{1595}/D_{1505}	
		CMW a)	CMW-Zn b)	CMW	CMW-Zn
Untreated	_	1.31	1.28	1.03	1.02
DMSO	70	0.97	0.63	0.98	1.31
Control	70	0.66	0.49	0.98	1.07
DMF	70	1.27	1.25	0.95	0.99
Control	70	0.95	0.92	0.98	1.04
DMAc	60	0.73	0.59	0.97	1.06
Control	60	0.66	0.53	1.01	1.05
MAc	70	0.80	0.59	1.01	1.13
Control	70	0.57	0.49	0.98	1.07
TMU	55	0.80	0.60	0.97	1.20
Control	55	0.61	0.53	0.98	1.03
HMPA	65	0.86	0.58	0.96	1.24
Control	65	0.64	0.54	0.97	1.06

CM 木材 (Carboxymethylated wood.)

酢酸亜鉛処理試料 (After treatment with Zn (OAc)2 solution.)


D₁₇₃₅, D₁₅₉₅, D₁₅₉₅はそれぞれ1735cm⁻¹, 1595cm⁻¹, 1595cm⁻¹ における吸光度を示す。 D₁₇₃₅, D₁₅₉₅ and D₁₅₉₅ are absorbance at 1735cm⁻¹, 1595cm⁻¹ and 1505cm⁻¹, respectively.

3 結果と考察

3.1 混合溶媒によるCM化反応

溶媒の相違がCM化反応へおよぼす影響を検討するために,所定濃度の各種溶媒を用いてCM化を試みた。処理液の濃度は,NaOHを0.4mol/l, CICH₂COONaを0.4mol/lとした。反応条件は,反応温度が60,反応時間が2時間である。反応の結果を $\mathbf{3}$ 1表に示す。処理木材の吸光度比 D_{1735} / D_{1505} は,反応に用いた溶媒において $0.73 \sim 1.27$ であった。これらCM化処理木材を,1.0mol/l濃度のZn(OAc)₂水溶液で処理するとDMFを除く5種類の溶媒では D_{1735} / D_{1505} は $0.73 \sim 0.97$ から $0.58 \sim 0.63$ と減少し,同時に D_{1595} / D_{1505} 値は $0.96 \sim 1.01$ から $1.06 \sim 1.31$ に増大した。これは既報 3)で報告したように,CM基末端のカルボキシル基に金属が結合したためである。DMFでは,これらの変化は起こらなかった。この結果から,DMFを除く5種類の溶媒でCM化が起こったと考えられる。

DMFを用いた処理で、反応が生じなかった原因は以下のように考えられる。IR等のデータより、へミセルロースがほとんど溶脱していないことが示されているが、このことは、ナトリウムがセルロースのOH基に吸着せず他の反応に消費された可能性を示唆す

第1図 カルボキシメチル基導入量に対するジメチル スルホキシド(DMSO)濃度の影響

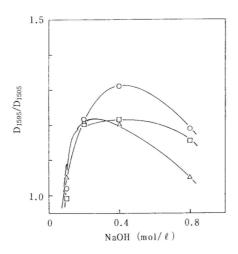
Fig. 1. Effects of the concentrations of dimethylsulfoxide on the absorbance ratio of $D_{\rm 1595}$ to $D_{\rm 1505}$

る。これらの溶媒を用いた場合,主反応であるエーテル化より,むしろ次式に示すような副反応が促進されると考えられる^{1,4)}。

CICH, COONa + NaOH CH, (OH) COONa + NaCI

なお、HMPA、TMUなどの溶媒の場合、DMSOより低い置換度しか得られなかった要因は、溶媒の水への溶解性の低さによるものと考えられる。

3.2 DMSO·水混合溶媒によるCM化反応


3.2.1 DMSO濃度の影響

上記の結果から,最も反応性がよかったDMSOを 用いて,CM化の最適条件を検討した。第1図に金属 塩処理後の吸光度比D1595/D1505と, DMSO・水混合溶 媒中のDMSO濃度との関係を示した。なお,処理液 として, DMSO·水混合溶媒に対しNaOHを 0.4mol/I,CICH。COONaを0.4mol/Iの割合で含む ものを用いた。CM基の導入量はDMSO濃度の上昇 にともない,70%を超えると急激に下降し,90%では ほとんどCM基が導入されない。すなわち,DMSO 濃度が70%の時に最大値を示す。この結果は前報1) のエタノール・水混合溶媒の結果と異なる。エタノー ル・水混合溶媒では最大値は現れない。DMSO・水混 合溶媒において最大値を有することは,早川等2)の CM化に関する報告で述べられているように有機溶媒 が一定の濃度を超えると副反応が促進され、CM化が 阻害されることが原因のひとつかも知れない。

3.2.2 CICH₂COONaとNaOHのモル比の影響 次に,CICH₂COONaとNaOHとのモル比の影響を 検討した。なお,データは,金属塩処理後の吸光度比 D₁₅₉₅/D₁₅₉₅で表した。

結果を**第**2**図**に示す。CICH $_2$ COONa濃度が0.2, 0.4mol/Iでは,それぞれNaOH濃度が0.2, 0.4mol/Iの場合に最大値を示した。CICH $_2$ COONa濃度0.8mol/Iでは,NaOHO.4mol/Iの場合に最大値を示した。また図には示していないが,反応温度を110 に設定した場合にも同様の結果が得られた。さらにCICH $_2$ COONa濃度が0.1mol/I においては

〔林産試場報 第7巻 第3号〕

第2図 カルボキシメチル基導入量に対する,水酸化 ナトリウム(NaOH)濃度の影響

Fig. 2. Effects of the concentrations of sodium hydroxide on the absorbance ratio of D₁₅₉₅ to D₁₅₀₅

モノクロル酢酸ナトリウム濃度 (mol/ℓ) : △; 0.2, ○; 0.4, □; 0.8.

Concertrations of sodium monocloroacetate (mol/ ℓ): \triangle ; 0.2 \bigcirc ; 0.4 \Box ; 0.8

NaOH濃度が0.1mol / 1の場合に最大値を示した。すなわち, $CICH_2$ COONa濃度0.8mol / 1 を除き,NaOH / $CICH_2$ COONa = 1 / 1のとき最大値を示す。この結果は,既報 $^{(1)}$ の水・エタノールを用いたCM 化反応において, $CICH_2$ COONa とNaOHが,1 / 1 の場合(NaOH / $CICH_2$ COONaでは2 / 1のモル比)に最大のCM化度が得られたことと一致する。 $CICH_2$ COONa濃度0.8mol / 1における結果は,CM化剤中の溶質の溶解度が関係していると考えられる。

第2図に示した結果は、DMSO・水混合溶媒におい

ても,前報¹⁾のエタノール・水混合溶媒と同様に,早川等⁴⁾の示した等モル原則が成立することを示している。以上のことから,DMSO・水混合溶媒によるCM化の最適条件は,DMSO濃度70%で等モル原則の成立する場合であると判断される。

今回の実験では,CM基導入量の定量に関しては,エタノールを溶媒として用いたときと異なり, D_{1755}/D_{1505} 値や中和滴定による置換度測定による定量ができず, D_{1505}/D_{1505} 値によって評価するという間接的な方法を用いた。従ってCM基導入量については,他の溶媒で得られた数値と直接比較することはできない。しかし,これらの結果から非プロトン性極生溶媒であるDMSOをはじめTMU,HMPA等によってもCM化反応は可能であることが判明した。

文 献

- 1)中野隆人,本間千晶,江畑進,松本章:木材学会誌 36,193-199(1990)
- 2)早川栄治,森田弥左衛門:東京工業試験所報告,55,177-221(1960)
- 3)中野隆人,本間千晶,江畑進,松本章:木材学会 誌 36,644-650(1990)
- 4)早川栄治,小川敏男,森田弥左衛門:東京工業試験所報告,49,331-406(1954)

- 利用部 化学加工科 - *性能部 接着塗装科 - (原稿受理 H5.3.24)