衝撃型粉砕機の最大処理能力の推定

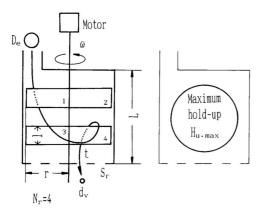
遠 藤 展

Estimating the Maximum Crushing Capacity of a Hammer Mill

Hiromu ENDOH

The maximum crushing capacity of a mill, F_{max} , is expressed by
$F_{\text{max}} = H_{\text{u.max}} / t $ (1)
where $H_{\text{u.max}}$ is the maxmim hold-up when a steady state operation is possible and t is the
mean residence time through the mill. The experimental relationship between the maximum
hold-up and the size of hammer mill takes the form
$H_{u,max} = 39.5 \times 10^{-3} \text{ bN}_r I S_r^{1/2}, \cdots (2)$
while the experimental relationship between the mean residence time and the operational
conditions of the hammer mill takes the form
$t=3.98 \times 10^3 [0.693 - (d_v/D_e)^n]/(d_v^{1.3} ^2L^{-2/3})$ (3)
From Eqs.(1),(2)and(3), the maximum crushing capacity of a harmer mill F_{max} is expressed
by
$F_{\text{max}} = H_{\text{u.max}} / t = 9.92 \times 10^{-6} \text{bN}_{\text{r}} \text{r} \text{IS}_{\text{r}}^{1/2} \text{d}_{\text{v}}^{1.3} ^{2} \text{L}^{-2/3} / [0.693 \bullet \ \ (\text{d}_{\text{v}} / \text{D}_{\text{e}})^{\text{n}}] \cdot \dots $ (4)
The measured average crushing capacity was 1.5 times as large as the value calculated from
the empirical equation (4). However, approximate estimation of the maximum crushing
capacity is possible from the equation (4).
粉砕機の最大処理能力Fmxは式(1)に示した様に、最大原料滞留量Hu・maxとその平均滞留時間
tの二つの要素によって決定される。 F _{mx} = H _{u,mx} / t・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
「max - 「umax / t で
Hu . max = 39.5×10^{-3} bN _r rlS _r ^{1/2}
衝撃型粉砕機の平均滞留時間は式(3)によって示される。
$t = 3.98 \times 10^3 [0.693 - (d_v/D_e)^n] / (d_v^{1.3} ^2L^{-2/3}) \cdots (3)$
式,(1),(2),(3)から,衝撃型粉砕機の最大処理能力を推定するための実験式を得た。得ら
れた実験式は次式である。

 F_{max} $+J_{u,max}$ / $t=9.92 \times 10^{-6}$ bN_r r $IS_r^{1/2}$ $d_r^{1.3}$ $^2L^{-2/3}$ / $[0.693 - (d_r/D_e)^n]$ \cdots (4) 測定された最大処理能力は(4)式によって得られた計算値の約1.5倍を示しているが,(4)式によって衝撃型粉砕機の最大処理能力はほぼ推定できる。


1.緒 言

衝撃型粉砕機は、機構が簡便で耐久性が高いため, 木材産業のみならず各種の産業において用いられてい るが、その研究は十分行われているとはいえない。衝 撃型粉砕機のみならず、粉砕機における研究の最大課 題は、その最大処理能力を明らかにすることである。 粉砕機の最大処理能力を決める一つの要素は、粉砕機 に設備された原動機の大きさである。粉砕機が十分な 処理能力を有していても原動機が小さい場合,その処 理能力は原動機の大きさによって決定される。したが って理想的には原動機の大きさと粉砕機の最大処理能 力は一致することが望ましい。粉砕機の最大処理能力 は第1図ならびに(1)式に示した様に,最大原料滞留 量とその平均滞留時間の二つの要素によって決定され る。処理能力の大きい粉砕機とは原料滞留量が大きく て,滞留時間が小さいもの,即ちより大量の原料を収 納でき、それをより短時間で処理出来る粉砕機である。

$$F_{max} = H_{u.max}/t$$
(1)

2. 衝撃型粉砕機の最大処理能力

最大原料滞留量は主に粉砕機の粉砕室の大きさによ

第1図 目皿付き衝撃型粉砕機の模式図 Fig.1 . Model of a screen hammer mill

式 (1), (2), (3)より最大処理能力は次式で示される

第1表 実験に用いた原料の大きさと密度 Table 1. Dimensions and densities of the particles used

種 類			密度
Materials	De	n	Density*
and species	(mm)		(g/cm³)
木 炭	()		\8//
Charcoal	9.3	1.3	0.278
	4.3	1.0	0.2.0
	3.5	0.76	
ゴム			
Rubber	3.3	6.0	0.999
石 炭			
Coal	3.4	1.19	1.24
砂			
Sand	1.06	1.9	2.61
	17.9	10.0	
	15.4	10.0	
カラマツ			
Japanese	12.5	3.5	0.390
larch	8.4	4.2	
	6.4	3.1	
	5.2	3.3	
	3.0	3.4	
	2.5	3.1	
	1.45	3.1	
	1.1	3.5	
シラカンバ			
Birch	12.3	3.5	0.436
シナノキ	15.0	10.0	0.00
Bass wood	15.8	10.0	0.305
	14.4	10.0	
トドマツ	8.1	5.5	•••••
Fir	15.3	10.0	0.200
FII	9.0		0.326
	2.82	3.3	
ミズナラ	2.84	1.44	
Oak	16.8	10.0	0.646
Oan	13.1	10.0	0.040
	8.5	5.0	
トドマツ樹皮	0	9.0	•••••
Bark of fir	28.2	10.0	0.390
Dank of th	15.5	10.0	0.330
	7.7	5.0	
	4.3	1.0	
	1.0	1.0	

*乾燥重量基準 Based on oven-dry weight

[林産武器 第7巻 第1号]

 $F_{\text{max}} = H_{\text{u.max}} / t = 9.92 \times 10^{-6} \text{ bN}_{\text{r}} \text{rIS}_{\text{r}}^{1/2} d_{\text{v}}^{1.3}$ $L^{-2/3}/$ [0.693 - $(d_v/D_e)^n$] (4)

第1表には実験に用いた原料を、第2表には実験に 用いた粉砕機を示した。第2図には、(4)式にもとず いて計算によって得られた最大処理能力と測定された 最大処理能力との関係を示した。測定された最大処理 能力は(4)式によって得られた計算値の約1.5倍を示し ているが,(4)式によって衝撃型粉砕機の最大処理能 力はほぼ推定できる。

記号

D。: 原料のロジンラムラー粒度分布における粒度特性 数(mm)

d、: 粉砕物のロジンラムラー粒度分布における50%粒

F_{max}:最大処理能力(kg/h)

H_{u,max}:最大原料滞留量(kg)

L:粉砕室の長さ(m)

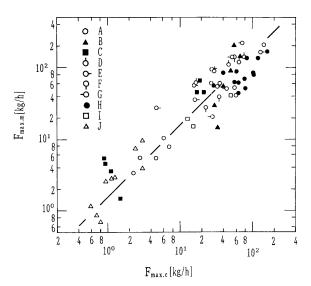
1:粉砕ハンマーの回転方向の幅(m)

n: 原料のロジンラムラー粒度分布における分布定数

N,:粉砕ハンマーの数

r:粉砕ハンマー先端と回転軸までの距離(m)

S_r:目皿の開孔比(%)


t:原料の平均滞留時間(hr)

』: 原料を外力を加えないで充填した場合のかさ密度 (kg/m^3)

第2表 実験に用いた衝撃型粉砕機の仕様

Table 2. Specifications of harmer mills examined

Mill	Motor	Diameter	Length, L	Rotational	Distance, r	Width, 1	Nummber of	Open-size	Opening area ratio
				speed, ω			hammers, Nr	of screen	of screen, Sr
	(kW)	(m)	(m)	(rad/ sec)	(m)	(m)		(mm)	(%)
A	1.5	0.20	0.080	157	0.08	0.075	2	10.0	38.2
								5.3	45.0
								1.4	13.9
В	3.7	0.21	0.098	149	0.10	0.098	3	7.8	33.4
								5.8	28.7
С	0.75	0.10	0.960	120	0.05	0.096	3	5.9	50.9
								0.9	18.2
D	22	0.68	0.790	178	0.34	0.123	52	10.0	41.7
							38		
							26		
							14		
							8		
Е	22	0.68	0.790	178	0.34	0.123	52	6.0	38.0
									25.0
									17.2
									10.8
									5.0
F	22	0.68	0.680	178	0.34	0.123	39	10.0	41.7
Г	22	0.00	0.560	176	0.34	0.123	28	10.0	41.7
			0.360				16		
	00	0.00				0.100	52	10.0	41.7
G	22	0.68	0.123	84	0.34	0.123	52	10.0	41.7
				126		Ì			
				210		4			
Н	11	0.30	0.240	148	0.15	0.123	56	10.0	27.1
				210					
				263					
				316					
I	18.5	0.62	0.110	755	0.31	0.110	26	0.4	6.0
				520					
				351					
J	0.4	0.14	0.050	104	0.07	0.048	4	2.1	32.5
								1.1	25.7
								0.6	22.8

第2図 測定した最大処理能力 F_{max.m}と,計算によって求められた最大処理能力 F_{max.c}との関係 Fig.2. Relation between maximum crushing capacity measured F_{max.m} and that calculated numerically F_{max.c}

注) アルファベットは第2表の粉砕機を示す。

Note) The alpabets in the figure show the crushers used in Table 2.

τ:原料の粉砕特性時間 (hr)

ω:粉砕ハンマーの回転角速度 (rad/s)

LIST OF SYMBOLS

 D_e : diameter of absolute size constant of Rosin-Rammler distribution of feed, mm

 d_{ν} : diameter at 50% diameter of Rosin - Rammler distiribution of product, mm

F_{max}: maximum crushing capacity, kg/h

H_{u.max}: maximum hold-up in mill, kg

L: length of mill, m

1 : width of hammer in the rotational direction, m

n : distribution constant of feed in Rosin - Rammler

distribution diagram

 N_r : number of hammers

r : distance from the top of hammer to the center
of rotational axis of mill, m

S_r: opening area ratio of screen, %

t: mean residence time through mill, hr

 ρ_{b} ; bulk density of feed which was loosely packed, kg/m^{3}

τ : breakage characteristic time,hr

ω: rotational speed of hammer, rad/s

一技術部 機械科一

(原稿受理 平 4. 7.21)