長期間の実使用環境下における構造用合板の耐久性評価

平成 23~25 年度 経常研究

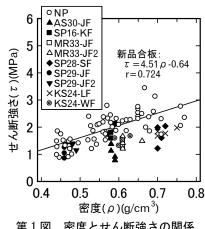
生産技術 G,耐久・構造 G,居住環境 G(協力 道総研北方建築総合研究所,NPO 法人建築技術支援協会)

はじめに

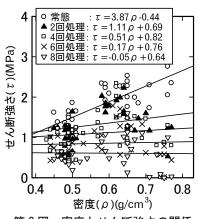
長期優良住宅普及促進法の施行により、構造躯体 の耐震性や耐久性に優れた住宅が強く求められてい る。構造躯体を構成する耐力壁や水平構面は、構造 用合板に代表される木質面材料で構成するものが主 流となっており、構造躯体が長期にわたって性能を 維持するためには、面材料やその接合部の耐久性が 非常に重要になっている。構造用合板の耐久性は, 促進劣化試験や屋外暴露試験によりこれまで多くの 検討がなされているが、これらの試験結果から実際 の住宅部材として使用した場合の性能低下を直接推 定することは困難である。本研究では、実際の住宅 に使用された合板の各種の性能低下を調査するとと もに、促進劣化試験における性能低下と比較分析を 行った。

研究の内容

平成 23 年度は、実使用環境での接着性能の低下 と促進劣化処理による性能低下を比較した。実使用 環境での性能低下を調べるために,第1表に示す物 件から床下地合板を採取した(以下,解体合板)。こ れらはいずれも南洋材を使用した 12mm 厚 5plv 合板 であり、初期の接着の程度は JAS1 類であった。また、 市販の1類合板3種類(記号NP)について,合板の JAS における 1 類の処理に準じて、「4 時間煮沸→60℃ で 20 時間乾燥」を 1 サイクルとした促進劣化処理を 8 サイクルまで繰り返し行った。これらの解体合板 および促進劣化処理した合板について、合板の JAS に準じた引張せん断試験を行った。


解体合板の密度とせん断強さの関係では(第1図), 解体合板のせん断強さは,新品合板の回帰直線の下 部に分布しており,長期間の使用により合板の接着 性能が低下したものと考えられた。促進劣化処理し た合板については、第2図に示すように、処理の回 数が増えるにつれて回帰直線が下へ移動し、傾きが 徐々に減少した。密度が高い合板ほど性能低下が顕 著であったが,これは密度が高い合板ほど吸水や乾 燥により発生する収縮膨張応力が大きく,接着層へ の負担が大きくなることが主な原因と推察された。 解体合板の性能低下を数値化するために, 板の残存率) = (それぞれの解体合板のせん断強さ の平均値) ÷ (それぞれの解体合板の密度に対応す る新品合板の回帰直線上のせん断強さ)として定義 すると、解体合板の残存率は密度が高い合板ほど低 くなり,促進劣化試験の結果と同様の傾向を示した。 これらの結果から、促進劣化の繰り返し数を実使用 環境の年数に換算できる可能性が示唆された。

まとめ


実使用環境と促進劣化試験での性能低下を比較 することで, 促進劣化処理の回数を住宅部材として の使用年数に換算できる可能性が示された。今後は, 曲げ性能や釘接合性能等の性能や使用環境が性能低 下に及ぼす影響等を検証する予定である。

第1表 調査物件の概要

物件	所在地	築	合板	採取
記号		年数	記号	位置
AS30	旭川市	30	AS30-JF	1F和室
SP16	札幌市	16	SP16-KF	1F台所
MR33	室蘭市	33	MR33-JF	1F和室
			MR33-JF2	2F和室
SP28	札幌市	28	SP28-SF	2F押入
SP29	札幌市	29	SP29-JF	1F和室
			SP29-JF2	2F和室
KS24	釧路市	24	KS24-LF	1F居間
			KS24-WF	2F洋室

第1図 密度とせん断強さの関係 (実使用環境)

第2図 密度とせん断強さの関係 (促進劣化試験)