Tokachi Agricultural Experiment Station

道総研

基肥にも追肥にも活用! ITを使った可変施肥技術による収量向上

概 要 Abstract

生育センサにより取得・蓄積されたデータを利用して基肥可変施肥に活用できるマップ 施肥システムを開発しました。畑輪作において基肥にも追肥にも活用できるシステムです。

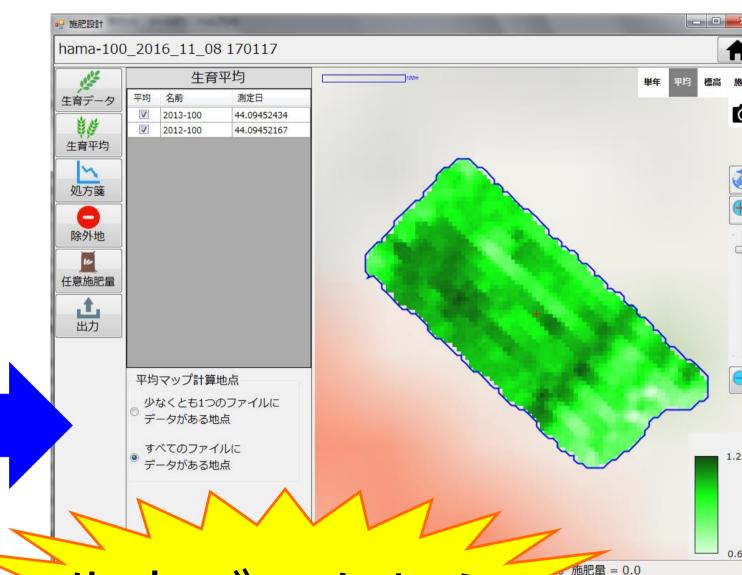
成果 Results

〇施肥マップ作成ソフトウェアの開発

トラクタ搭載型の生育センサなどで取得した生育データから地力ムラを推定して施肥マップが作成できます。

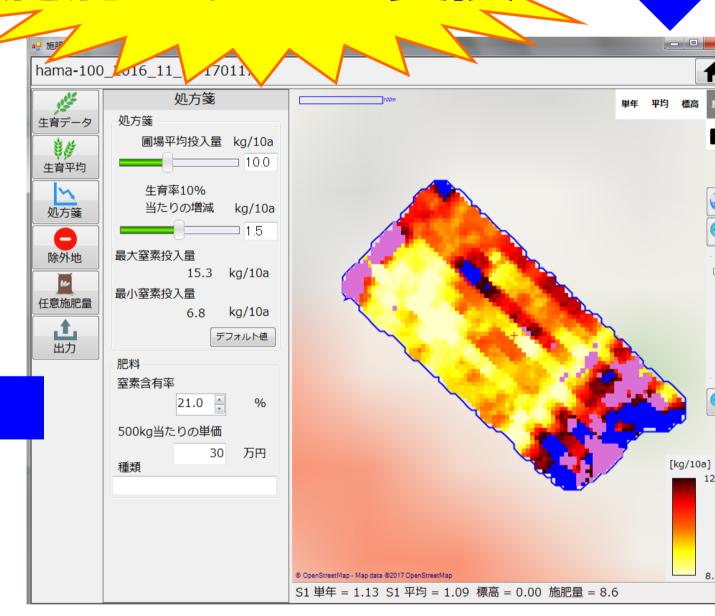
〇マップに基づいた施肥システム

トラクタ自動操舵で使われる端末で施肥マップを読み込み、走行するだけで地力ムラに応じた施肥が可能です。


○てんさい、ばれいしょ可変施肥の効果

- ・てんさいでは平均5.9%増収。
- ・でん粉原料用ばれいしょ「コナフブキ」では過剰な施肥の抑制とともに平均3.2%の増収効果。

収 小麦 → 4-5千円/10a(既往成果) 入 てんさい → 5-6千円/10a(本成果) 増 ばれいしょ → 3千円/10a(本成果)


30ha以上の畑作農家で導入可能!

生育テクの取得

生育データから施肥マップへ変換

てんさい、ばれいしょに対する可変施肥の効果

	年次	圃場	可変施肥	総窒素施肥量(kg/10a)		収量(kg/10a)		
-1-	十八	四十勿	実施時期	可変	定量	可変	定量	可/定
てんさい(直播)	2014	1	基肥	16.5(13.8-18.2)	17.5	787	710	111
		2	基肥	17.8(14.8-20.1)	17.5	755	710	106
		3	基肥	17.3(15.1-20.8)	17.5	740	753	98
		4	追肥	13.3(11.4-14.8)	13.3	889	860	103
	2015	5	分施,追肥	12.8(11.0-16.3)	13.1	1243	1171	106
	2016	6	基肥	15.9(13.6-19.3)	16.0	921	843	109
		7	分施	14.1(12.0-17.5)	14.3	849	793	107
		平均		15.4	15.6	883	834	105.9
でん粉原料	2015	Α	追肥	19.5(18.4-23.2)	21.4	843	804	105
用ばれい	2016	В	追肥	23.2(20.7-25.7)	24.7	786	774	102
しょ		平均		21.3	23.1	814	789	103.2

注)てんさいの収量は糖量、でん粉原料用ばれいしょの収量はでん粉重である。

普及 Dissemination

- ・施肥マップ作成ソフトウェアは株式会社トプコン、北海道大学 との共同研究で開発しました。
- ・生育のばらつきが窒素栄養条件に起因する圃場で活用できます。
- ・ソフトウェアは特許出願中で、2017年中に市販化予定です。

連絡先 Contact

十勝農業試験場 研究部 生産システムグループ 0155-62-9835 tokachi-agri@hro.or.jp