Hokkaido Food Processing Research Center

平成17年度事業報告平成18年度事業計画

北海道立食品加工研究センター

本道の食品工業は、豊富で良質な農林水産資源を背景として、工業出荷額の約4割を 占めるなど、地域の経済や雇用はもとより、本道を支える重要な産業として発展してき ました。

食品加工研究センターは、平成4年2月の開設以来、本道の食品加工における技術と情報の拠点として、食品加工をテーマとした試験研究を行うとともに、研究成果発表会や技術講習会の開催などにより、研究成果等の普及に努めてまいりました。

また、企業等のさまざまな技術課題に対応するため、食品加工相談室や研究職員の派遣による技術指導など、各種支援事業を実施しております。

近年、食品工業を取り巻く環境は、少子高齢化に伴う市場の成熟化、安価な輸入品との競合、消費者ニーズの多様化に加え、食の安全・安心に関する意識が高まるなど、大きく変化しております。このような状況において、本道の食品工業が重要な産業として、引き続き発展を遂げるためには、食の安全・安心に対する信頼の確保、地域の特色を活かした食品づくり、競争力のある市場開拓など、積極的な取り組みが求められています。

当センターにおいては、これらの環境変化を踏まえ、平成16年3月に新たにビジョンを策定し、研究開発については、①道産食品の安全・安心の確保、②生産物の高付加価値化、③環境と調和した産業展開を重点研究分野に設定しての研究開発の効率的な推進に、技術支援については、最重点業務と位置付け、その量的拡大・質的充実に努めていくこととしております。

昨年度は、一般試験研究として、道産有用微生物を利用した新規食肉製品の開発などを行い、産学官との連携による重点領域特別研究として、ラクトバチルスプランタラム HOKKAIDO株を用いた機能性ヨーグルトの製品化などを行いました。また、技術支援においては、近年急速に市場を拡大している健康食品分野への道内企業の参入を支援する事業に新たに取り組みました。

今年度においては、酵母・多糖を原料とした免疫賦活効果を有する栄養補助食品の開発や、発酵技術を利用したアイスクリーム類の物性改善に関する研究、道産魚貝類を利用したペースト状食品の高付加価値化に関する研究などの研究課題に取り組むとともにきめ細かな技術支援を行うこととしております。

当センターは、本道食品工業の振興に寄与するとともに、食の安全・安心に対する信頼の確保を目指して、今後ともより一層努力していきたいと考えておりますので、皆様方のご理解、ご協力を賜りますとともに、積極的なご活用をお願いいたします。

平成18年5月

北海道立食品加工研究センター所長 吉 田 茂 夫

事業報告・事業計画

古術と	試験	ロニロコピンメーは、平成4年2月の開設以来、本道の食品加一究和	
	1 - 1		
	1 - 2	一般試験研究。在學科學的學界知识和,也是可以的問題的	
		道産ソバ粉を用いた機械製麺に関する研究	
		食品乾燥の高効率化技術に関する試験研究	
		エクストルーダによる農産物を用いた新規スナック菓子の開発	
	# 5 tc	発酵魚肉ペーストの食味および発酵の改良に関する研究	8
		食品加工廃棄物の処理に関するシステム技術の開発	
		-微生物を利用したバイオエネルギー生成および低減化の最適条件の確立	10
	ATH.	麦汁を用いた乳酸発酵飲料およびビールビネガーの開発	12
		道産ワイン由来の新規乳酸菌を用いた赤ワイン醸造試験	·- 14
	1 - 3	重点領域特別研究	
		道産食材の機能性を活かした新規加工食品の開発	
		- フコイダンを含有した機能性飲料の開発	- 16
		ープロピオン酸菌を利用した乳製品の開発	- 18
		ラクトバチルスプランタラムHOKKAIDO株を用いた機能性豆乳ョーグルトの製品化・	- 20
		風味と機能性に優れた水産発酵調味料とそれを活用した水産加工品の開発	- 22
	1 - 4	民間等共同研究	
		におい識別装置を用いたパンの香気評価に関する研究	- 24
		抗菌機能を有するホタテ貝殻を活用した製品開発	- 26
		アロニアを用いたブランデー・リキュールの開発	28
		タマネギ搾汁液を使ったタマネギ酒の開発	- 30
	1 - 5	受託試験研究	
	•	野菜抽出酵素液の摂取が人の腸内細菌叢に与える影響	- 32
		微生物・酵素を利用したネギ類の高付加価値加工品の開発	- 34
2	技術普	普及・支援	
	2 - 1	食品加工相談室	- 36
	2 - 2	食品工業技術高度化対策指導事業(現地技術支援)	
	2 - 3	技術支援事業(センター内技術支援)	
	2 - 4	食品品質管理技術向上支援事業	
	2 - 5	移動食品加工研究センター	
	2 - 6	技術講習会	- 40
	2 - 7	技術研修生の受力力	/1

4-2 学会等発表 53 I 平成18年度事業概要 1 平成18年度事業概要 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 58 2-1 試験研究課題一覧 58 2-2 一般試験研究 59 ・遺産有用微生物を利用した新規食肉製品の開発 59 ・機産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・粉体加工技術を応用した新規搾油技術の開発<新規> 59 ・道産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究 60		2-8 試験測定検査機器及び加工機械の開放	42
(1) 技術審査 44 (2) 講習会などへの講師派遣 44 (3) 視察実績 45 (4) 健康食品参入支援・ネットワーク形成事業 48 (5) インキュベーションスペース貸与 48 3 技術情報の提供 3-1 研究成果発表会の開催 49 3-2 展示会・紹介展 49 3-3 刊行物一覧 50 3-4 食品加工技術情報データペースの公開 50 3-5 図書・資料室の開放 50 4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 53 4-3 学会等発表 54 II 平成18年度事業計画 1 平成18年度事業概要 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 58 2-2 一般試験研究 ・道産有用微生物を利用した新規食肉製品の開発 59 ・粉体加工技術を応用した新規食肉製品の開発 59 ・粉体加工技術を応用した新規食肉製品の開発 59 ・粉体加工技術を応用した新規食肉製品の開発 59 ・粉体加工技術を応用した新規食肉製品の開発 59 ・発酵技術を利用したデオスクリーム類の物性改善に関する研究(新規) 60 ・道産場子類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産・ノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産・ノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産・ノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産・カリ類を利用したペースト状食品の高付加価値化に関する研究(新規) 60		2-9 依頼試験分析	43
(2) 講習会などへの講師派遣 44 (3) 視察実績 45 (4) 健康食品参入支援・ネットワーク形成事業 48 (5) インキュペーションスペース貸与 48 3 技術情報の提供 3-1 研究成果発表会の開催 49 3-2 展示会・紹介展 49 3-3 刊行物一覧 50 3-4 食品加工技術情報データベースの公開 50 3-5 図書・資料室の開放 50 4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 53 4-3 学会等発表 53 1 平成18年度事業概要 51 1 平成18年度事業計画 57 2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 58 2-2 一般試験研究 58 2-2 一般試験研究 58 2-2 一般試験研究 59 ・道産有用微生物を利用した新規食肉製品の開発 59 ・機産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・機産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・洗産加工副産物に含まれる力ロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産・ノコ類の抗酸化性などの保健機能性に関する研究 60 ・道産・ノコ類の抗酸化性などの保健機能性に関する研究 60 ・道産・ノコ類の抗酸化性などの保健機能性に関する研究 60 ・道産・ノコ類の抗酸化性などの保健機能性に関する研究 60 ・道産・ノコ類の抗酸化性などの保健機能性に関する研究 60		2-10 その他	
(3) 视察実績 45 (4) 健康食品参入支援・ネットワーク形成事業 48 (5) インキュベーションスペース貸与 48 3 技術情報の提供 3-1 研究成果発表会の開催 49 3-2 展示会・紹介展 49 3-3 刊行物一覧 50 3-4 食品加工技術情報データベースの公開 50 3-5 図書・資料室の開放 50 4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 53 4-3 学会等発表 53 4-3 学会等発表 53 1 平成18年度事業計画 57 1 平成18年度事業計画 57 2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 57 2 試験研究課題一覧 58 2-2 一般試験研究 59 ・遺産有用微生物を利用した新規食肉製品の開発 59 ・機産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・機産加工副産物に含まれる力ロテノイド色素の検索と機能性評価 59 ・選庫も薬類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60		(1) 技術審査	44
(4) 健康食品参入支援・ネットワーク形成事業 48 (5) インキュペーションスペース貸与 48 3 技術情報の提供 3-1 研究成果発表会の開催 49 3-2 展示会・紹介展 49 3-3 刊行物一覧 50 3-4 食品加工技術情報データベースの公開 50 3-5 図書・資料室の開放 50 4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 54 I 平成18年度事業概要 54 I 平成18年度事業計画 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 57 2 試験研究課題一覧 58 2-2 一般試験研究 59 ・遺産有用微生物を利用した新規食肉製品の開発 59 ・農産加工削産物に含まれる機能成分を活用した新規健康食材の開発 59 ・設体加工技術を応用した新規律油技術の開発(新規) 59 ・遺産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・「新規におい解析システム」を利用したの高付加価値化に関する研究(新規) 60 ・道産糸介類を利用したペースト状食品の高付加価値化に関する研究(新規) 60		(2) 講習会などへの講師派遣	44
(5) インキュペーションスペース貸与 48 3 技術情報の提供 3-1 研究成果発表会の開催 49 3-2 展示会・紹介展 49 3-3 刊行物一覧 50 3-4 食品加工技術情報データベースの公開 50 3-5 図書・資料室の開放 50 4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 54 ■ 平成18年度事業概要 1-1 試験研究 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 2-1 試験研究課題一覧 2-1 試験研究課題一覧 2-1 試験研究課題一覧 55 2-2 一般試験研究 58 2-2 一般試験研究 58 2-2 一般試験研究 58 2-2 一般試験研究 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・発体加工技術を応用した新規費油技術の開発(新規) 59 ・道産根薬類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産弁ノコ類の抗酸化性などの保健機能性に関する研究(新規) 60		(3) 視察実績	45
3 技術情報の提供 3-1 研究成果発表会の開催 49 3-2 展示会・紹介展 49 3-3 刊行物一覧 50 3-4 食品加工技術情報データベースの公開 50 3-5 図書・資料室の開放 50 4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 53 4-3 学会等発表 54 ■ 平成18年度事業概要 1-1 試験研究 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 57 2 試験研究課題一覧 58 2-2 一般試験研究 58 3-3 体殖工副産物に含まれる機能成分を活用した新規健康食材の開発 59 - 農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 - 設備技術を応用した新規権油技術の開発(新規) 59 - 遺産褐藻類に含まれる力ロテノイド色素の検索と機能性評価 59 - 発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 - 「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 - 「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 - 道産未ノコ類の抗酸化性などの保健機能性に関する研究 60 - 道産魚介類を利用したペースト状食品の高付加価値化に関する研究 54 規2 60 - 道産魚介類を利用したペースト状食品の高付加価値化に関する研究 54 規2 60		(4) 健康食品参入支援・ネットワーク形成事業	48
3-1 研究成果発表会の開催 49 3-2 展示会・紹介展 49 3-3 刊行物一覧 50 3-4 食品加工技術情報データベースの公開 50 3-5 図書・資料室の開放 50 4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 53 4-3 学会等発表 54 I 平成18年度事業計画 1 平成18年度事業制画 1 平成18年度事業側要 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 57 2 試験研究課題一覧 58 2-2 一般試験研究 58 2-2 一般試験研究 58 2-2 一般試験研究 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・農産加工技術を応用した新規控制技術の開発(新規) 59 ・粉体加工技術を応用した新規控制技術の開発(新規) 59 ・治確得藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・道産者ノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産者介類を利用したベースト状食品の高付加価値化に関する研究(新規) 60		(5) インキュベーションスペース貸与	48
3-1 研究成果発表会の開催 49 3-2 展示会・紹介展 49 3-3 刊行物一覧 50 3-4 食品加工技術情報データベースの公開 50 3-5 図書・資料室の開放 50 4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 53 4-3 学会等発表 54 I 平成18年度事業計画 1 平成18年度事業制画 1 平成18年度事業側要 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 57 2 試験研究課題一覧 58 2-2 一般試験研究 58 2-2 一般試験研究 58 2-2 一般試験研究 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・農産加工技術を応用した新規控制技術の開発(新規) 59 ・粉体加工技術を応用した新規控制技術の開発(新規) 59 ・治確得藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・道産者ノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産者介類を利用したベースト状食品の高付加価値化に関する研究(新規) 60			
3 - 2 展示会・紹介展 49 3 - 3 刊行物一覧 50 3 - 4 食品加工技術情報データベースの公開 50 3 - 5 図書・資料室の開放 50 4 特許・学会発表等 4 - 1 出願済特許 51 4 - 2 学会誌等への発表 53 4 - 3 学会等発表 53 4 - 3 学会等発表 54 ■ 平成 1 8 年度事業概要 1 - 1 試験研究 55 1 - 2 技術支援 56 1 - 3 依頼試験・設備使用 57 2 試験研究課題一覧 2 - 1 試験研究課題一覧 58 2 - 2 一般試験研究課題一覧 58 2 - 2 一般試験研究課題一覧 58 2 - 2 一般試験研究 59 ・遺産有用微生物を利用した新規食肉製品の開発 59 ・農産加工剤産物に含まれる機能成分を活用した新規健康食材の開発 59 ・農産加工剤産物に含まれる機能成分を活用した新規健康食材の開発 59 ・潜産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産角介類を利用したペースト状食品の高付加価値化に関する研究(新規) 60	3	3 技術情報の提供	
3 - 3 刊行物一覧 50 3 - 4 食品加工技術情報データベースの公開 50 3 - 5 図書・資料室の開放 50 4 特許・学会発表等 4 - 1 出願済特許 51 4 - 2 学会誌等への発表 53 4 - 3 学会等発表 53 4 - 3 学会等発表 54		3-1 研究成果発表会の開催	49
3-4 食品加工技術情報データベースの公開 50 3-5 図書・資料室の開放 50 4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 53 4-3 学会等発表 54 ■ 平成18年度事業計画 1 平成18年度事業概要 1-1 試験研究 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 57 2 試験研究課題一覧 58 2-2 一般試験研究 58 2-2 一般試験研究 58 2-2 一般試験研究 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・資産得藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産角介類を利用したペースト状食品の高付加価値化に関する研究(新規) 60		3-2 展示会・紹介展	49
3-5 図書・資料室の開放 50 4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 54 I 平成18年度事業計画 1 平成18年度事業概要 1-1 試験研究 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 58 2-1 試験研究課題一覧 58 2-2 一般試験研究 59 ・遺産有用微生物を利用した新規食肉製品の開発 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・遺産得薬類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・道産者介類を利用したペースト状食品の高付加価値化に関する研究(新規) 60		3-3 刊行物一覧	50
4 特許・学会発表等 4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 54 I 平成18年度事業計画 1 平成18年度事業概要 1-1 試験研究 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 2-1 試験研究課題一覧 58 2-2 一般試験研究 58 2-2 一般試験研究 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・資産得薬類に含まれるカロテノイド色素の検索と機能性評価 59 ・道産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究〈新規〉 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発(新規〉 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究〈新規〉 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究 (60 ・道産角介類を利用したペースト状食品の高付加価値化に関する研究 (新規) 60		3-4 食品加工技術情報データベースの公開	50
4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 54 I 平成18年度事業概要 1-1 試験研究 55 1-2 技術支援 56 1-3 佐頼試験・設備使用 57 2 試験研究課題一覧 2-1 試験研究課題一覧 58 2-2 一般試験研究 道産有用微生物を利用した新規食肉製品の開発 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・労権技術を応用した新規搾油技術の開発(新規) 59 ・道産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・ 道産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・ 発酵技術を利用したアイスクリーム類の物性改善に関する研究(新規) 60 ・ 「新規におい解析システム」を利用した食品の香り評価技術の開発(新規) 60 ・ 道産キノコ類の抗酸化性などの保健機能性に関する研究(新規) 60 ・ 道産魚介類を利用したペースト状食品の高付加価値化に関する研究(新規) 60 ・道産魚介類を利用したペースト状食品の高付加価値化に関する研究(新規) 60		3-5 図書・資料室の開放	50
4-1 出願済特許 51 4-2 学会誌等への発表 53 4-3 学会等発表 54 I 平成18年度事業制画 1 平成18年度事業概要 1-1 試験研究 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 58 2-1 試験研究課題一覧 58 2-2 一般試験研究 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発・59 ・粉体加工技術を応用した新規搾油技術の開発・新規> 59 ・道産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・道産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究<新規> 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発<新規> 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究 60 ・道産魚介類を利用したペースト状食品の高付加価値化に関する研究<新規> 60	1	些	
4-2 学会等発表 53 1 平成18年度事業 54 1 平成18年度事業概要 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 58 2-1 試験研究課題一覧 58 2-2 一般試験研究 59 ・遺産有用微生物を利用した新規食肉製品の開発 59 ・労体加工技術を応用した新規権油技術の開発<新規> 59 ・道産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究<新規> 60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発<新規> 60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究 60 ・道産魚介類を利用したペースト状食品の高付加価値化に関する研究<新規> 60	7	4 ─ 1 出願溶裝許	51
1 平成18年度事業無画 1 平成18年度事業概要 1 1 試験研究 55 1 2 技術支援 56 1 3 依賴試験・設備使用 57 2 試験研究課題一覧 58 2 1 試験研究課題一覧 58 2 2 一般試験研究 58 2 2 2 一般試験研究 59 ・遺産有用微生物を利用した新規食肉製品の開発 59 ・ 機産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・ 粉体加工技術を応用した新規搾油技術の開発<新規> 59 ・ 道産得薬類に含まれるカロテノイド色素の検索と機能性評価 59 ・ 発酵技術を利用したアイスクリーム類の物性改善に関する研究<新規> 60 ・ 「新規におい解析システム」を利用した食品の香り評価技術の開発<新規> 60 ・ 道産糸介類を利用したペースト状食品の高付加価値化に関する研究<新規> 60 ・ 道産魚介類を利用したペースト状食品の高付加価値化に関する研究<新規> 60			
■ 平成18年度事業計画 1 平成18年度事業概要 1-1 試験研究 55 1-2 技術支援 56 1-3 依頼試験・設備使用 57 2 試験研究課題一覧 2-1 試験研究課題一覧 58 2-2 一般試験研究 ・道産有用微生物を利用した新規食肉製品の開発 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・ 治産褐藻類に含まれる機能成分を活用した新規健康食材の開発 59 ・ 道産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・ 発酵技術を利用したアイスクリーム類の物性改善に関する研究⟨新規⟩ 60 ・ 「新規におい解析システム」を利用した食品の香り評価技術の開発⟨新規⟩ 60 ・ 「新規におい解析システム」を利用した食品の香り評価技術の開発⟨新規⟩ 60 ・ 道産キノコ類の抗酸化性などの保健機能性に関する研究 60 ・ 道産魚介類を利用したペースト状食品の高付加価値化に関する研究⟨新規⟩ 60		4-3 学会学器=	55
1 平成18年度事業概要 1-1 試験研究		4 0 7442	04
1 平成18年度事業概要 1-1 試験研究			
1-1 試験研究		Ⅱ 平成18年度事業計画	
1-2 技術支援・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		Ⅱ 平成18年度事業計画	
1-3 依頼試験・設備使用	1		
2 試験研究課題一覧 2-1 試験研究課題一覧 58 2-2 一般試験研究 ・ 道産有用微生物を利用した新規食肉製品の開発 59 ・ 農産加工副産物に含まれる機能成分を活用した新規健康食材の開発 59 ・ 粉体加工技術を応用した新規搾油技術の開発 新規 59 ・ 道産褐藻類に含まれるカロテノイド色素の検索と機能性評価 59 ・ 発酵技術を利用したアイスクリーム類の物性改善に関する研究 新規 60 ・ 「新規におい解析システム」を利用した食品の香り評価技術の開発 新規 60 ・ 道産キノコ類の抗酸化性などの保健機能性に関する研究 60 ・ 道産魚介類を利用したペースト状食品の高付加価値化に関する研究 60	1	1 平成18年度事業概要	55
2-1 試験研究課題一覧	1	1 平成 1 8 年度事業概要 1 - 1 試験研究	
2-1 試験研究課題一覧	1	1 平成 1 8 年度事業概要 1 - 1 試験研究	56
2-2 一般試験研究 ・道産有用微生物を利用した新規食肉製品の開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		 1 平成18年度事業概要 1-1 試験研究	56
・道産有用微生物を利用した新規食肉製品の開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		 1 平成18年度事業概要 1-1 試験研究	56 57
・農産加工副産物に含まれる機能成分を活用した新規健康食材の開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		 1 平成18年度事業概要 1-1 試験研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56 57
・粉体加工技術を応用した新規搾油技術の開発〈新規〉59 ・道産褐藻類に含まれるカロテノイド色素の検索と機能性評価59 ・発酵技術を利用したアイスクリーム類の物性改善に関する研究〈新規〉60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発〈新規〉60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究60 ・道産魚介類を利用したペースト状食品の高付加価値化に関する研究〈新規〉60		 平成18年度事業概要 1-1 試験研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56 57 58
・道産褐藻類に含まれるカロテノイド色素の検索と機能性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		1 平成18年度事業概要 1-1 試験研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56 57 58
・発酵技術を利用したアイスクリーム類の物性改善に関する研究〈新規〉60 ・「新規におい解析システム」を利用した食品の香り評価技術の開発〈新規〉60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究60 ・道産魚介類を利用したペースト状食品の高付加価値化に関する研究〈新規〉60		1 平成18年度事業概要 1-1 試験研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56 57 58 59
・「新規におい解析システム」を利用した食品の香り評価技術の開発〈新規〉・・・・・60 ・道産キノコ類の抗酸化性などの保健機能性に関する研究・・・・・・・・・・・60 ・道産魚介類を利用したペースト状食品の高付加価値化に関する研究〈新規〉・・・・60		1 平成18年度事業概要 1-1 試験研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56 57 58 59 59
・道産キノコ類の抗酸化性などの保健機能性に関する研究60 ・道産魚介類を利用したペースト状食品の高付加価値化に関する研究<新規>60		1 平成18年度事業概要 1-1 試験研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56 57 58 59 59
・道産魚介類を利用したペースト状食品の高付加価値化に関する研究〈新規〉60		 平成18年度事業概要 1-1 試験研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56 57 58 59 59 59
A company of the particular of		1 平成18年度事業概要 1-1 試験研究	56 57 58 59 59 60
		1 平成18年度事業概要 1-1 試験研究	56 57 58 59 59 60 > 60
・水産乾物の品質管理のための菌叢解析61		1 平成18年度事業概要 1-1 試験研究	56 57 58 59 59 60 > 60

	・新規乳酸菌を利用した植物性発酵食品の開発<新規>61
	・酒類の製造工程による香味変化の解明とその防止法の開発61
	・醤油製造用耐塩性微生物乾燥スターターの開発<新規>62
4	2-3 重点領域特別研究
	・酵母・多糖を原料とした免疫賦活効果を有する栄養補助食品の開発<新規>63
	・水産加工における常圧過熱水蒸気処理装置システムの開発および新規食品の開発 63
	・ダッタンソバの安定生産と製品による産地形成支援63
	・光触媒機能評価システムの構築及び活用製品の開発〈新規〉64
	・北海道に適した新規乳酸菌によるマロラクティック発酵管理技術の確立<新規>64
	2-4 外部資金等活用研究
	・ハスカップの抗酸化機能成分を活用した新規加工食品の開発65
	・伝統医学とバイオメディカルによる生活改善食品の開発65
	Ⅲ センター概要
1	予算及び事業概要66
2	沿革67
3	組織
4	施設68
5	主要設備・機器68
6	主要試験・分析
7	利用方法

1 試験研究

1-1 試験研究課題一覧

(1) 食品開発部(15課題)

・プロピオン酸菌を利用した乳製品の開発	y 11		900000000000000000000000000000000000000		
I 平成17	在 庙	車盃	进生	上	
	十尺	于木	计以口	\neg	

注か程期关共同研究6数据 专证研究1次是

(2) 応用技術部 (9課題

光極媒機能評価システムの構築および活用製品の開発。		

「ほか受け研究」は特別

(3) 食品バイオ部(18課題)

それを活用した水産加工品の開発		

ほか外部資金:課題 民間等上間研究は課題 受打研究2課題

1 試験研究

1-1 試験研究課題一覧

(1) 食品開発部 (15課題)

No.	試験研究課題名	研究区分	実施年度	備考	ページ
1	道産ソバ粉を用いた機械製麺に関する研究	一般試験	15~17	終了	02~03
2	農産加工副産物に含まれる機能成分を活用した 新規健康食材の開発	一般試験	17~19		59
3	道産褐藻類に含まれるカロテノイド色素の検索と機能性評価	一般試験	17~18		59
4	道産有用微生物を利用した新規食肉製品の開発	一般試験	16~18		59
5	道産食材の機能性を活かした新規加工食品の開発 ・フコイダンを含有した機能性飲料の開発 ・プロピオン酸菌を利用した乳製品の開発	重点領域	16~17	終了	16~17 18~19
6	水産加工における常圧過熱水蒸気処理装置システムの開発 および新規食品の開発	重点領域	17~18		63
7	ダッタンソバの安定生産と製品の開発による産地形成支援	重点領域	16~18		63
8	ハスカップの抗酸化性機能成分を活用した新規加工食品の開発	外部資金	17~18		65

(2) 応用技術部(9課題)

No.	試験研究課題名	研究区分	実施年度	備考	ページ
1	食品乾燥の高効率化技術に関する試験研究	一般試験	16~17	終了	04~05
2	エクストルーダによる農産物を用いた新規スナック菓子の開発	一般試験	16~17	終了	06~07
3	発酵食肉ペーストの食味及び発酵の改良に関する研究	一般試験	16~17	終了	08~09
4	道産キノコ類の抗酸化性などの保健機能性に関する研究	一般試験	17~18	ST REE	60
5	光触媒機能評価システムの構築および活用製品の開発	重点領域	17~19		64
6	におい識別装置を用いたパンの香気評価に関する研究	民間共同	17	終了	24~25
7	抗菌機能を有するホタテ貝殻を活用した製品開発	民間共同	17	終了	26~27
8	野菜抽出酵素液の摂取がヒトの腸内細菌相に与える影響	受託試験	17	終了	32~33

ほか受託研究1課題

(3) 食品バイオ部 (18課題)

No.	試験研究課題名	研究区分	実施年度	備考	ページ
1	食品加工廃棄物の処理に関するシステム技術の開発 一微生物を利用したバイオエネルギー生成及び 廃棄物低減化の最適の条件の確立-	一般試験	16~17	終了	10~11
2	水産乾物の品質管理のための菌叢解析	一般試験	17~18		61
3	麦汁を用いた乳酸発酵飲料及びビールビネガーの開発	一般試験	16~17	終了	12~13
4	道産ワイン由来新規乳酸菌の実用化 -赤ワイン添加醸造試験-	一般試験	16~17	終了	14~15
5	酒類の製造工程による香味変化の解明とその防止法の開発	一般試験	16~18		61
6	ラクトバチルスプランタラム HOKKAIDO 株を用いた 機能性豆乳ョーグルトの製品化	重点領域	17	終了	20~21
7	風味と機能性に優れた水産発酵調味料と それを活用した水産加工品の開発	重点領域	16~17	終了	22~23
8	伝統医学とバイオメディカルによる生活改善食品の開発	外部資金	17~20		65
9	アロニアを用いたブランデー・リキュールの開発	民間共同	17	終了	28~29
10	タマネギ搾汁液を使ったタマネギ酒の開発	民間共同	17	終了	30~31
11	微生物・酵素を利用したネギ類の高付加価値加工品の開発	受託試験	16~17	終了	34~35

ほか外部資金1課題、民間等共同研究4課題、受託研究2課題

1-2 一般試験研究

道産ソバ粉を用いた機械製麺に関する研究

 $(H15 \sim 17)$

企画調整部総務課 山木一史

食品開発部農産食品科 佐藤理奈 中野敦博 太田智樹

1 研究の目的と概要

これまでソバ粉比率が高い麺は伝統的技術を用いた手打ち職人により製造されているが、機械製麺においては製造技術等に関する種々の要因が未解明であり、製品の品質劣化も著しい。そこで、本研究では道産ソバ粉の利用拡大を目的に、道産ソバ粉の各種成分特性を把握し、製麺特性との関連性を解明することにより、ソバ粉含有比率が高くかつ食感の優れた麺の機械製麺技術の開発を行うものである。

昨年度までに、これまで廃棄していた甘皮部分の粘性物質の利用が生地物性を向上させること、ソバ粉菌数の低減化に湿式処理方法が効果のあることを確認した。 最終年度となる今年度は、甘皮粘性物質の抽出方法と製麺試験について検討した。

【予定される成果】

- ・高品質なソバ粉比率が高い麺の機械製麺による製造
- ・滅菌ソバ粉の製造

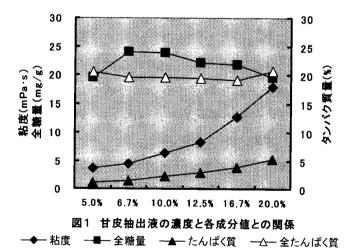
2 試験研究の方法

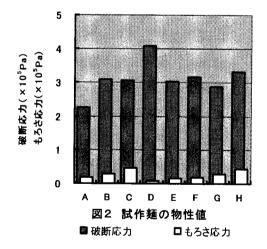
- (1) 供試試料として道内産ソバの甘皮部分(甘皮粉)を用いた。また、製麺試験には道産ソバのロール挽き粉(ロール粉)と石臼挽き粉(石臼粉)を用いた。
- (2) 甘皮部分の濃度が 5.0~50%になるように調製した試料液を、60 分間振とうした 後、遠心分離を行い上澄み液の粘度を測定した。同時にこの上澄み液のタンパク質量および全糖量(フェノール硫酸法、490nm)を測定した。
- (3) 甘皮部分の粘性物質抽出方法を検討するために、10%濃度の試料液を調製し、静置、ゆっくり振とう(80回/分)(S)、激しく振とう(260回/分)(H)、の3パターンで抽出時間をそれぞれ10分、30分、60分にて抽出した上澄み液の粘度を測定した。抽出液の成分は、静置60分、振とうS60分、振とうH30分と60分の条件について、それぞれタンパク質量と全糖量を測定した。
- (4) 製麺試験は、製粉企業より供与していただいた石臼粉 100%の手打ち麺(A)をコントロールとして用いた。また、押出式製麺機により石臼粉 100%(B)と、ロール粉 100%(C)の麺を製麺し、ロール粉:小麦粉=50:50(D)、ロール粉:小麦粉=70:30(E~H) は通常の製麺機により製麺した。なお、D~Fは加水量 30%、GとHは加水量 33% とし、FとHについては 10%濃度の甘皮抽出液を加水としてそのまま使用した。試作したそれぞれの麺を所定の時間ゆでた後、クリープメータにて破断試験を行い、物性の評価を行った。

3 実験結果

甘皮抽出液の濃度と各成分値との関係を図1に示した。濃度の増加にともない、粘度とタンパク質量が増加したが、全糖量と全タンパク質量はあまり差がみられなかった。50%濃度は上澄み液がほとんど得られず試験が出来なかった。また、 $12.5\sim20\%$ 濃度も液の収率が 50%以下であり、作業性も考慮すると 10%濃度が適当であると判断された。抽出方法と時間の関係では、激しく 30分間振とうすることで、効率よく粘度の高い抽出液が得られた(表 1)。さらに、同じ条件で各成分も多く含まれていることが判明した(表 2)。

物性試験の結果を図 2 に示した。破断応力は麺のかたさ、もろさ応力は麺の歯切れ感(値が低いほうが歯切れがよい)を表す。手打ち麺(A)は食感がソフトだが歯切れが良かった。押出麺(B、C)はいずれも A よりかたさがあるが歯切れが劣った。通常の機械製麺(D~H)ではソバ粉比率 50%の D がもっともかたく歯切れ感も良好であったが、これは小麦粉の性状が強く表れているものと思われた。甘皮抽出液を用いた F と H は、同じソバ粉比率である E と G に比べて歯切れがやや劣るが、かたさではともに上回った。 F と H は製麺時における作業性もよく、生麺の状態では麺線が切れにくくしっとりした性状であった。


以上のことから、ソバ粉比率の高い機械製麺において甘皮抽出液を直接利用できる ことが判明した。


表1 抽出方法と時間による粘度への影響

衣 一 抽山万法と时间による柘及への影響							
	10min	30min	60min				
静置	2.88	3.91	4.68				
振とう−S	3.19	3.75	4.54				
振とう−H	6.14	6.34	6.40				
	-	(単位	: mPa·s)				

表2 抽出方法による成分値への影響

	タンパク質量(%)	全糖量(mg/g)
振とう-H30	20.5	22.9
振とう-H60	20.3	24.9
振とう−S60	17.7	19.9
静置-60	16.9	17.7

4 要 約

甘皮部分を 10%濃度で激しく 30 分間振とうすることで、効率よく粘性物質が抽出できた。この抽出液を直接用いて通常の機械製麺方法でソバ粉比率 70%の麺を試作したところ、物性値および作業性ともに良好な麺が製造出来たことから、甘皮抽出液を活用することで、ソバ粉比率の高い機械製麺が可能であることが判明した。

食品乾燥の高効率化技術に関する試験研究

 $(H16\sim17)$

応用技術部 熊林義晃

応用技術部プロセス開発科 清水英樹 奥村幸広

1 研究の目的と概要

乾燥工程は加工食品を製造する上で重要な工程の一つである。近年、製品の差別 化、高付加価値化の試みは乾燥品においても行われており、素材の風味を残した高 品質な乾燥を行いたいという要望がある。現状では低温で長時間かけて乾燥させる 方法が主流で、生産量、工程の組み方に制約を受けながら生産を行っている。

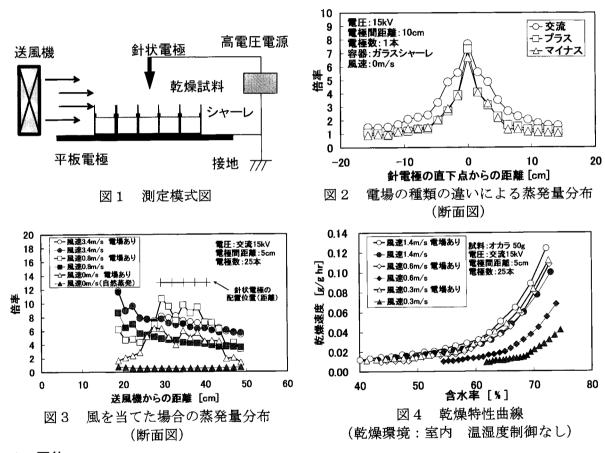
1970年代に高電場条件下で水分の蒸発が促進される現象が認められているが、乾燥機へ応用するという観点での試験は行われていない。食品の乾燥工程においてこの現象が応用できれば、高品質な乾燥物を低温でも効率良く生産できる可能性があり、また工程の省エネルギー化にも役立つ可能性がある。

本研究は、高電場条件下で水分の蒸発が促進される現象を食品の乾燥技術として確立し、乾燥機への導入方法を見出すことを目的とする。今年度は、装置化するために必要な高電場処理の特徴把握と食品を用いた乾燥試験とを行った。

【予定される成果】

・新しい乾燥技術を用いた乾燥装置の開発に必要な技術情報の獲得

2 試験研究の方法


高電圧電源の出力の一方を針状電極、他方を接地した平板電極に接続して、この電極間に高電場を発生させた。試験結果は試料の蒸発による重量減少量を測定し、同時に測定した自然蒸発のものを基準(自然蒸発=1)にして倍率で表した。蒸発量分布は、蒸留水を所定量入れた内径 27mm のガラス製のシャーレを針状電極下の平板電極上に密着させて静置し、各シャーレの重量減少量を測定することで調べた。また、試料に平板電極と平行した風を当てるように送風機を配置した(図1)。針状電極は、1本又は 2.5cm 間隔に 5×5 配列させた 25 本のものを使用した。

食品乾燥試験は、粉砕された形態のモデル試料としてオカラを用いた。試料 50g を円盤状に整形して平板電極上に配置した。乾燥中は重量変化を記録し、乾燥前と乾燥後の含水率測定値から乾燥途中の含水率を算出した。測定は室内環境で行い、温度・湿度の制御は行わなかった。

3 実験結果

図2に電場の種類の違いによる蒸発量分布を示した。分布の形状は釣鐘形となっており、蒸発の倍率は針状電極の直下が一番高く、電場の種類に関係なくほぼ同じ値となっていた。直下点からの距離が大きくなるに従い交流電場の場合はなだらか

に減少したのに対し直流電場では急激に減少した。この形状の違いから交流電場の方が単位面積当たりの蒸発量が大きいと予想され、直流電場より有利であると考えられる。図3は電極数を25本として風を当てた場合の蒸発量分布を示した。高電場処理をした場合、電極の下方全体の倍率が高くなり、複数電極の配置で処理面積が拡がることがわかった。送風と組合せた場合はさらに倍率が高くなる傾向が見られ、特に0.8m/sの弱い風を当てた時、電場との相乗効果は顕著に大きくなった。風速を適切に調整した送風と電場との組合せは、大きな相乗効果が期待できると考えられる。図4にオカラを乾燥した場合の乾燥特性曲線を示した。乾燥速度の変化には勾配の急な減率第一乾燥期となだらかな減率第二乾燥期が現れた。前者では弱い風と高電場処理と組合せると、強い風に匹敵する大きな乾燥速度が得られた。電場の形成に必要な電力は送風に比べて僅かな電力で済むため省エネ化の可能性があり、高電場処理を組合せた乾燥機は乾燥効率を向上できる可能性があることが示唆された。

4 要約

一本の針状電極を用いた高電場処理の蒸発量分布の形状は電極直下を最大値とした釣鐘形となっており、複数本の針状電極を配置すれば処理面積を増やせることがわかった。風速を適切に調整した送風と電場とを組合せることにより、大きな相乗効果が期待できることがわかった。高電場処理の導入は乾燥効率を向上させられる可能性があることが示唆された。

エクストルーダによる農産物を用いた新規スナック菓子の開発 (H16~17) 応用技術部プロセス開発科 清水英樹 奥村幸広 応用技術部 熊林義晃

1 研究の目的と概要

従来からあるスティックタイプのポテトスナックは、乾燥ポテトフレークを主原料として用い、副原料を添加、混合、混練、成型後、焼成あるいはフライという工程で製造されているが、乾燥原料を用いているため馬鈴薯の風味に乏しい。本試験では、「蒸かし」などの加熱処理をした馬鈴薯をそのまま主原料として用い、馬鈴薯の風味豊かな焼成タイプのスナック菓子を製造することを目的とし、エクストルーダを用いたポテトスナックの基本製造技術について検討した。

【予定される成果】馬鈴薯の風味豊かなスナック食品の開発

2 試験研究の方法

1)主原料の調製

馬鈴薯は市販の男爵を使用した。水洗・剥皮・カット後、蒸し器にて25分加熱した後、マッシャーを用いてマッシュポテトを調製した(生マッシュポテト)。対照として、生マッシュポテトと同等の含水率となるように乾燥ポテトフレークに加水して調製したマッシュポテトを用いた(乾燥復水マッシュポテト)。

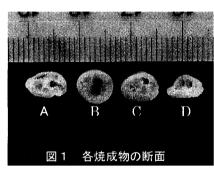
2)生地の調製

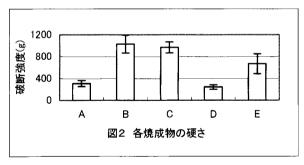
以下の配合組成(重量比)で副原料を混合し生地(含水率:71%)を調製した。 マッシュポテト:ショートニング:ベーキングパウダー=92:7:1 また、主原料であるマッシュポテトの10%を馬鈴薯でんぷんまたは乾燥ポテトフレークに置き換えた生地(含水率:62%)を調製して比較評価を行った。

3)成型条件

エクストルーダ(TCO·30 神鋼テクノ(株))を用い、以下の運転条件で成型した。 スクリュー:フォワードスクリューのみ、スクリュー回転数:50rpm ダイ:1穴、口径7mm ϕ 、バレル温度:室温 成型物は長さ約12cm にカットした。

4)焼成条件


電気オーブン((株)栄和製作所)を用い、160℃、40分を基本条件として焼成した。 5)焼成物の評価


各焼成物は、含水率を測定するとともに、表面および断面を観察することにより 焼成後の状態を比較評価した。また、レオメーター(サン科学(株)、歯形プランジャー)を用いて破断強度を測定し、硬さを比較した。風味、食感については官能的に評価した。

3 実験結果

エクストルーダでの成型性は、いずれの生地でも表面が滑らかな円柱状の成型物が得られ、馬鈴薯でんぷん等の粉体を添加しない高含水率(71%)の生地でも成型後に形が崩れる事はなかった。また、生マッシュポテトを主原料とする生地のほうが、乾燥復水マッシュポテトを用いた生地よりも、やや硬めでしっかりとした成型物が得られ、ハンドリング性は良好であった。 さらに、これらを 7mm φ で成型したものは、生地含水率が 71%と高くても焼成後の含水率が 5%前後まで均一に焼成可能であることが解った。

図1に、各焼成物の断面を示した。生マッシュポテトに馬鈴薯でんぷん、乾燥ポテトフレークを添加したものは、焼成後も成型時の形状をほぼ維持していた。一方、生マッシュポテトだけのものは、成型時の形状が維持できず楕円状の焼成物となったが、焼成時に発生する蒸気を、焼成が進んで成型物表面がある程度の硬さになった後オーブンから排出することにより、円柱状に近い焼成物を得ることができた。次に、各焼成物の硬さを図2に示した。比較として市販のスティックタイプのポテトスナックも同様に測定した(図中 E)。生マッシュポテトを主原料としたものおよび乾燥復水マッシュポテトを主原料としたものの破断強度は市販スナックの約 1/2 の値を示し、非常に軽い食感であった。生マッシュポテトに馬鈴薯でんぷん、あるいは乾燥ポテトフレークを添加したものは、硬めで歯ごたえのある食感であった。これらの添加量を変えることにより、食感の調節は可能であると考えられた。

A: 生マッシュボテト B: A+馬鈴薯でんぷん C: A+乾燥ポテトフレーク D: 乾燥復水マッシュボテト E: 市販ポテトスナックまた、馬鈴薯の風味は、生マッシュポテトを主原料とした焼成物で、乾燥復水マッシュポテトを主原料としたものや生マッシュポテトに馬鈴薯でんぷんを添加したものよりも強く感じられ、生マッシュポテトを原料に使用する優位性が確認された。

4 要 約

エクストルーダを用い、加熱処理した馬鈴薯をそのまま主原料とするポテトスナックの製造について検討した。成型および焼成条件を操作することにより、乾燥ポテトフレークを使用しない高含水率の生地から、馬鈴薯の風味豊かな焼成タイプのスナックを製造することができた。

発酵魚肉ペーストの食味および発酵の改良に関する研究 (H16~17) 食品開発部畜産食品科 山田加一朗 応用技術部機能開発科 柿本雅史 濱岡直裕

1 研究の目的と概要

北海道の年間漁業生産量は約150万トンであり、食料品全体の出荷額に占める水産食料品の割合は最も多い。しかし、主要水産物の市場価格の低迷や需要の落ち込みが続き、多獲性の魚種である小型ホッケ、スケトウダラ、ブナサケなどの生鮮流通品や加工品としての利用価値は依然として低いのが現状である。このため漁港を持つ市町村や漁業協同組合などからは、新しい加工方法による水産加工製品の開発が引き続き要望されている。本研究では、平成14および15年度に実施した試験研究「道産水産物を原料とするペースト状発酵食品の開発」において検討した製造技術を基に、ホッケやサケ、そのほか貝類など様々な原料を使用して試験醸造を行い、食味や風味の問題点を解決するための改善策を検討した。

【予定される成果】

・水産物を用いた新規発酵食品の開発により、多獲性魚種の高付加価値化や用途 拡大が図られる。

2 試験研究の方法

1) 原料魚貝類の違いが食味に与える影響

スケトウダラ、サケ、ホタテの可食部を 30 分間蒸煮し、ミンチ状とした後、これら に 米 麹 (味 噌 用) を 23 % 、 食 塩 9 % お よ び 前 培 養 し た 味 噌 用 酵 母 $Zygosaccharomyces\ ruxii$ (当センター保存菌株)を所定量添加した。これらを 30 で 60 ~ 90 日間発酵させた後、タンパク分解率と滴定酸度を測定した。

2) 前処理、発酵工程中の水分調整が食味に与える影響

原料魚にはサケを用い、前処理として解凍フィレーを 30 分間蒸煮したものをミンチ状にし、そのまま試験に使用するもの(水分含量 60%:水分調整なし)と、通風乾燥によって水分調整したもの(水分含量 57%:水分調整あり)を用いた。これらに米麹(味噌用)、食塩および味噌用酵母を所定量添加し、ポリ袋に入れ密閉状態にしたもの(ポリ袋あり)と、ポリ袋に入れず開放状態のもの(ポリ袋なし)、合計 4 区を設定し、90 日間発酵させた後タンパク分解率を測定した。

3 実験結果

1)魚種別発酵ペーストの タンパク分解率と滴定酸 度を図1に示した。スケト ウダラとホタテの発酵ペ ーストのタンパク分解率 はそれぞれ 28.5%、27.2% であり、サケの発酵ペース トの18.6%よりも高い分解 率を示した。一方、滴定酸

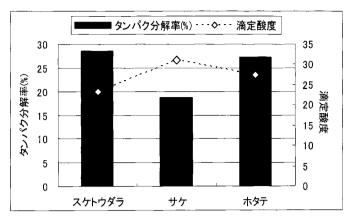


図1 魚種別発酵ペーストのタンパク分解率と滴定酸度

度はサケの発酵ペーストが最も高く、他の2魚種よりアミノ酸量が少なく有機酸量が多いことが示された。また、官能評価では3つの発酵ペーストともそれぞれの風味が生きた良好なものであったが、特にホタテ発酵ペーストは旨味、甘みが強く感じられるものとなった。

2) 前処理、発酵工程中の水分調整を行なった発酵ペーストのタンパク分解率を図2に示した。前処理による水分調整を検討した結果、水分調整なしのもはポリ袋の有無に関わらず、20%を超える比較的高いタンパク分解率を示した。また、発酵中の水分

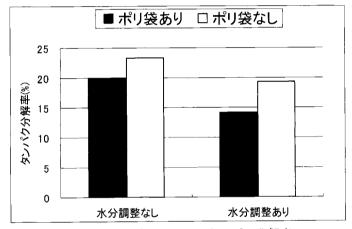


図2 水分調整した発酵ペーストのタンパク分解率

調整については、発酵中にポリ袋を使用せず、開放させた方がタンパク分解率が 高くなり、風味も良好になることが明らかになった。

4 要約

魚種によって発酵ペーストの成分に差があることが明らかになり、特にホタテの発酵ペーストは食味、風味が良好であった。また。前処理、発酵工程中の水分調整についての検討を行ったところ、前処理で原魚の水分を調整せず、発酵工程中にポリ袋で密閉せず開放した方がタンパク分解率が高くなり、旨味の多い発酵ペーストが作製できることが分った。

食品加工廃棄物の処理に関するシステム技術の開発

-微生物を利用したバイオエネルギー生成及び低減化の最適条件の確立-(H16~17) 食品開発部水産食品科 能登裕子 食品バイオ部バイオテクノロジー科 中川良二 八十川大輔

1 研究の目的と概要

北海道ではホタテ、サケ、ジャガイモ、ビートなどの主要農水産物が大規模に生産され、それらを原料に各種食品が製造されている。この加工工程で大量の未利用残渣や副産物が生じ、これらの処理コストが加工業者の経営を圧迫している。食品廃棄物の一部は飼肥料として再資源化されているものの、大部分は廃棄物として処理されているのが現状で、環境に優しく、処理コストが小さい新たな処理方法の確立が急務となっている。

本研究では、ホタテ貝加工処理残渣を中心とした蛋白質系食品廃棄物の効率 的な低減化とそれを原料とした有用物質の生成システムを構築することを目指 し、ホタテ貝のウロを微生物によって発酵させて、バイオエネルギー(水素ガ ス)を生成させると同時にその低減化を図ることを検討した。

【予定される成果】

- ・食品加工残渣の減量化による環境負荷の低減化
- ・食品加工残渣からバイオエネルギーの生産によるエネルギー及び廃棄物処理 コストの削減

2 試験研究の方法

昨年度に土壌より分離された推定水素生成菌 4 株の内、安定して培養できた 2 株($Clostridium\ acidisoli$ 、分離菌株番号 11,22)を用いて実験を行った。ホタテのウロのみ、あるいは生理食塩水を 50 あるいは 75 重量%加えたものをホモジェナイズし、オートクレーブ処理後、菌液を加えて嫌気培養した。培養には、30 $^{\circ}$ の嫌気グローブボックスを使用した。水素測定は、ガスクロマトグラフィを用いた。培養後の廃棄物の低減化率を測定するため、タンパク質量(Coomassie 試薬)、グルコース量 (F-++y)、TS (全固形分: 試料を 105° で 2hr. 蒸発乾燥後の残量(試料湿基準%))および VS (強熱減量: 全固形分にした試料を 600° で 0.5hr. 強熱した時の減量(試料湿基準%))、COD(化学的酸素要求量、重クロム酸カリウム法)を測定した。

3 実験結果

表1に、各種ウロ濃度の培養液で菌株11と22をおおよそ24~96時間嫌気培養し

た時の発生ガス量と水素量を示した。それ以降のガス発生量は僅かであった。 菌株11、22共にウロ濃度の低い培養液で発生ガス量がより多くなり、発生ガス 中の水素濃度は何れのウロ濃度においても25%程度なので、結果として25%ウロ 濃度培養で生成水素量が最も多くなった。

		C 2/11/211. E 21	0,0 ,0 ,0 ,0		×11 22	
	分離菌株 番号	ウロ濃度(%)	ガス発生量 (L/ウロ湿重量 Kg)	水素濃度(%)	水素量 (L/ウロ湿重量 Kg)	培養時間(h)
		100	1. 9	25	0. 48	96
	11	50	2. 88	23	0. 66	96
ļ		25	7. 05	26	1. 83	48
		100	1. 41	23	0. 32	96
	22	50	2. 38	22	0. 52	48
		25	7. 1	25	1. 78	24

表1 ウロを嫌気培養した時の発生ガス量及び水素量

水素発酵によるウロ低減化率を調べるために培養前後での有機物量を測定し、表 2 に示した。その結果、菌株11 より22での培養の方が有機物量の減少率が大きく、ウロ濃度100、50、25%でそれぞれ15が100. 3、100. 20. 3

以上より、菌株22を用いたウロ濃度25%の嫌気培養により、効率の良い水素生成と有機物量の低減が可能であることが示された。

分離菌株 番号	ウロ濃度(%)	グルコース量(g/l)	タンパク質量 (μg/ml)	T S (%)	V S (%)	C O D _{Cr} (g/1)
ウロのみ	100	0. 41	1331	22.7	21.2	315
	100	0.016	798	20. 5	19. 1	311
11	50	0. 0035	255	11. 4	10.3	168
	25	0. 0026	152	6. 12	5. 18	108
	100	0. 035	463	18. 4	17. 1	294
22	50	0. 0069	253	10.5	9. 44	146
	25	0. 016	121	5. 89	4. 99	81.6

表2 培養前後での有機物量変化

4 要約

土壌より分離したClostridium acidisoli 2株(分離菌株番号11、22)を用いて、ホタテ貝のウロを分解し、水素ガスの生成と有機物量の低減化を検討した。菌株22を用いたウロ濃度25%での嫌気培養により効率の良い水素生成と有機物量の減少が達成され、水素発酵による蛋白質系水産廃棄物の環境負荷量低減化の可能性が示された。

麦汁を用いた乳酸発酵飲料及びビールビネガーの開発 (H16 ~ 17)

食品バイオ部発酵食品科 田村吉史 吉川修司 食品バイオ部バイオテクノロジー科 橋渡 携

1 研究の目的と概要

北海道内地ビール企業は、地ビールブームにのり最大30数社まで増えたが、ブームが一段落し、数社が製造を中止したため現在は25社程度となっている。

地ビールレストランに多くの人を呼び込むためには、観光客ばかりでなく地元の家族連れにも利用しやすいことが求められる。お酒を飲まない人や子供でも楽しめるノンアルコールの飲料で、地ビールレストランならではの商品があることが、その他のレストランとの差別化のためには有効である。麦汁を用いた乳酸発酵飲料は大人だけでなく、子供や健康志向の人にも充分受け入れられる特徴ある健康飲料である。また、麦汁を原料としたモルトビネガーはヨーロッパでは一般的であるが、日本には馴染みがなく国内では生産消費共に少ない。ビールを原料とするビールビネガーはポップが入っているのでモルトビネガーとは異なる商品となり、また、地ビールレストランでも消費も出来ることから、地ビールの有効利用につながる。

本研究では、麦汁中の乳酸発酵とビールの酢酸発酵の検討を行った。

【予定される成果】

- ・麦汁の乳酸発酵飲料及びビールビネガーが商品化される。
- ・地ビールの有効利用が図られることからコストダウンに繋がる。

2 試験研究の方法

麦芽は地ビール企業が実際に使用しているものを入手して用いた。麦汁は麦芽を市販のコーヒージを用いて砕いた後、6種類の麦汁濃度(25,50,75,100,125,150g/350ml)で調製した。各麦汁は Lactobacillus casei subsp casei L14、Lactobacillus plantarum HOKKAIDO、Leuconostoc mesentroides JCM 6124T 及び Pediococcus pentosaceus IFO3182 の 4種類の乳酸菌により乳酸発酵を行い、生菌数、pH 及び Brix の変化を測定した。地ビールの酢酸発酵は、各社の地ビールを超音波による脱炭酸した後、酢酸菌を添加して各販売用による好気的な発酵を行った。

3 実験結果

麦汁濃度は 75g/350ml による調製が一般的なビールの麦汁濃度である。前年度の結果より麦汁濃度は濃い方が風味が良好であることから、今年度は濃厚な麦汁による乳酸発酵を主に行った。今回使用した乳酸菌は前回良好な発酵と風味を有していた菌株の中から、タマネギ搾汁液の風味改善に効果が見られた菌株を取り上げた。試験に供した各乳酸菌の発酵 3 日目の菌数を図 1 に示した。Lb. plantarum HOKKAIDO を除き麦汁濃度による差はほとんどなく、麦汁濃度が上昇するに従い増加する傾向があった。Lb. plantarum HOKKAIDO は低濃度では菌数低下が生じて

いた。試験に供した各乳酸菌の発酵 3 日目の pH を図 2 に示した。いずれの菌株の各麦汁濃度の試験区でも pH は 3.5 前後に低下していた。各菌株による、乳酸発酵は順調に進行していたと考えられ、Lb. plantarum HOKKAIDO の菌数低下は低濃度の麦汁の緩衝能の低さが原因と考えられる。

地ビールは種類により酢酸発酵の早さが異なるが、順調に酢酸発酵が進行し、各ビールのアルコール量に準じた酢酸量を持つビールビネガーとなる。各地ビールの持つ風味をそのまま生かしたビールビネガーとなることから、各社で風味の異なるビネガーの製造が可能と考えられる。

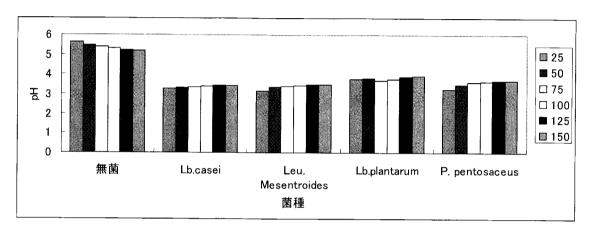


図1 各種乳酸菌の発酵後の生菌数

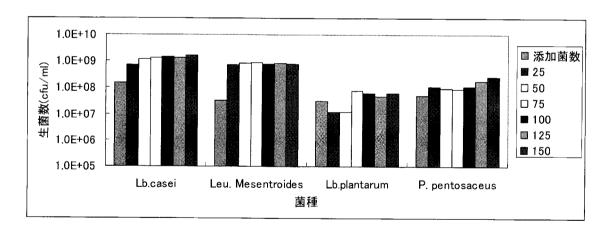


図2 各種乳酸菌の発酵後のpH

4 要約

多種類の乳酸菌により通常のビールの麦汁濃度に対して低濃度及び高濃度に調製した麦汁を発酵させたところ、生育と風味に違いが生じた。風味は高濃度麦汁で乳酸菌は Lactobacillus plantarum HOKKAIDO による発酵が良好であった。各地ビールは良好に酢酸発酵が進行し、各地ビールの風味を持つビールビネガーとなった。

道産ワイン由来の新規乳酸菌を用いた赤ワイン醸造試験 (H16〜17) 食品バイオ部バイオテクノロジー科 橋渡携 食品バイオ部発酵食品科 吉川修司 田村吉史

1 研究の目的と概要

北海道産のブドウは、その冷涼な気候により酸味が強いため、道産赤ワインの醸造において、ワインの減酸は品質向上のための重要な工程である。減酸方法としては、乳酸菌を使った減酸発酵(マロラクティック発酵;MLF)が効率よく安全な方法であるが、道内では、MLF管理技術が確立されておらず、MLFの進行は自然発酵に任せている状況にある。そこで、本研究ではMLF管理技術の確立を目指して、実際のワイン醸造における新規乳酸菌株の実用化を図り、北海道産赤ワインの品質をより安定・向上させることを目的とする。

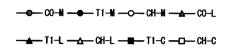
これまでの試験研究において、北海道産赤ワインより MLF に関与する乳酸菌を分離し、寒冷地に適応した減酸能力を有すると考えられる菌株を選択した。さらに、 当該株を実際の赤ワインへ添加し、その添加効果を確認する試験を、試験規模を変えて、二回行った。本年度は、選抜株を原料ブドウの異なる数種のワインに添加し、 その添加効果を確認するとともに、実用化に向けて、添加菌数を減らした場合の添加効果の大きさについて調べた。

【予定される成果】

- ・北海道産赤ワイン醸造におけるマロラクティック発酵の工程管理
- ・北海道産赤ワインの品質の向上・安定

2 試験研究の方法

供試菌株は、池田町ブドウ・ブドウ酒研究所により製造された、2000 年産ツバイゲルトレーベ種ブドウを原料とした赤ワイン(00ZW)から分離し、これまでの添加試験において添加効果の高かった株(T1株)を用いた。また、比較対照として、クリスチャンハンセン社の市販株(CH株)についても同様の試験を行った。


供試ワインは、池田町ブドウ・ブドウ酒研究所により 2005 年に製造された、原料ブドウの異なる 5 種類のワイン (清見種;SF、清舞種;KM、山幸種;YS、山ブドウ;YF、ツバイゲルトレーベ種;ZW) について試験した。

冷凍保存株を解凍・復元培養後、昨年度の結果を踏まえて、アルコール、低 pH、リンゴ酸への馴化を考慮した前培養を行った。前培養で増殖した菌株を、MLF 前の実際の赤ワイン 50ml に、生菌数 2.5×10⁷個/ml になるように添加した(昨年度は、生菌数が 1×10⁸個/ml になるように添加)。乳酸菌無添加区(CO)を用意し、15℃、嫌気培養した。培養日数に応じて適宜サンプリングし、生菌数、pH、L-リンゴ酸量、L-乳酸量を測定し、各試験区のリンゴ酸発酵能を比較検討した。

3 実験結果

清見種ワイン(SF)のL-リンゴ酸量、L-乳酸量、生菌数変化を図1に示す。 選抜株(T1)と市販株(CH)のMLFの進行度は同程度であったが、試験開始1週間後には生菌数が減少し始め、1か月後には停止してしまった。清舞種(KM)および山幸種(YS)も同様の傾向を示した(図省略)。添加菌数について、さらに試験を行う必要があると考えられた。

山ブドウ(YF)およびツバイゲルトレ ーべ種(ZW)の結果を図2および図3に 示す。どちらのワインとも T1 株、CH 株ともにほとんど MLF が進行しなか った。その原因として、YF はワイン の pH が低いため、菌株添加直後から、 生菌数が急激に減少したことが原因と 考えられた。今後選抜株より耐酸性の ある株を検索するとともに、添加菌数 についてもさらに調べる必要がある。 ZW については、昨年度 1×108個/ml 添加で、MLF が終了したことから、添 加菌数に関する検討をさらに加える必 要がある。また、生菌数の低下が少な かったにもかかわらず、MLF が進行し なかったことから、ZW ワイン中に MLF

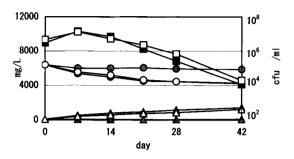


図1 清見種ワイン(SF)のL-リンゴ酸量、 L-乳酸量および生菌数変化

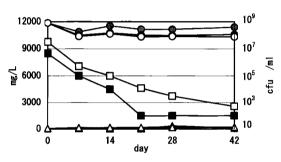


図2 山ブドウワイン(YF)のL-リンゴ酸量、 L-乳酸量および生菌数変化

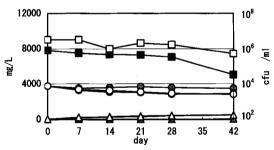


図3 ツバイゲルトレーベ種ワイン(ZW)の L-リンゴ酸量、L-乳酸量および生菌数変化

反応系に影響を及ぼす因子が存在することが示唆された。

4 要約

道産ワイン分離株(T1株)と市販株(CH株)を 5 種類の道産赤ワインに添加して、その添加効果について調べた。実用化を踏まえて、添加菌数を減らして試験を行ったところ、SF、KM、YS では試験開始後 1 か月で MLF が停止し、YF、ZW では MLF が進行しなかった。添加菌数についてさらに検討を加える必要があるとともに、YF については、分離株以上に耐酸性を持つ菌株を検索する必要があると考えられた。 ZW に関しては、ワイン中に存在する MLF 反応に影響を与える因子の究明が必要であることが示唆された。

1-3 重点領域特別研究

道産食材の機能性を活かした新規加工食品の開発 (H16~17)

フコイダンを含有した機能性飲料の開発ー

食品開発部水産食品科 錦織孝史 企画調整部技術支援課 田中彰 食品開発部 田中 常雄

1 研究の目的と概要

道産海藻のガゴメに含まれるフコイダン(多糖類の一種)は、原料の保存、乾燥、凍結、解凍、酸処理、加熱処理等で低分子化等の構造変化が懸念される。このため、処理工程の諸条件によるフコイダンの構造変化を分析するとともに、培養細胞による試験管レベルの評価系で機能性変化(抗腫瘍機能)を把握し、機能性を保持、あるいは高めるために必要な処理条件の把握とその製造技術を開発した。

【予定される成果】

・北海道産海藻を利用した高付加価値製品開発の促進

2 試験研究の方法

乾燥ガゴメ試料から抽出時の pH を 1~6 とした粗精製フコイダンと抽出時の pH を 3 とし CPC (セチルピリジニウムクロライド) 処理で精製した精製フコイダンを調製した (SIGMA 社製フコイダンを対照試料とした)。各試料の構成糖量、ウロン酸量、硫酸基含量を測定した。また、pH6 で抽出した粗精製フコイダンを pH7、50~100℃ で 0~6 時間加熱した試料溶液を調製した。各試料を終濃度 $50 \mu \text{ g/ml}$ でヒト胃ガン (腺ガン) 由来細胞 MKN-45 に添加し、ガン細胞の生存率を胃ガン細胞に対する抗腫 瘍活性として測定した。

3 実験結果

pH1~6 で抽出した粗精製フコイダンは、フコースを 13.9~19.3 mg/100 mg、マンニトールを 1.4~2.2 mg/100 mg、ウロン酸 2.5~9.6 mg/100 mg 含み、マンニトールとウロン酸は抽出 pH の上昇に従って増加する傾向を示した (表 1)。胃ガン細胞 (MKN-45) に対する抗腫瘍活性は、pH5、pH6 抽出の粗精製フコイダンが強い抗腫瘍活性を示し、胃ガン細胞の生存率はそれぞれ 22%、26%で、粗精製フコイダンでは抽出 pH が高くなるほどその活性が強くなる傾向を示した。SIGMA 製フコイダン、精製フコイダンの抗腫瘍活性は弱く、各試料を添加した胃ガン細胞の生存率は 87%、70%であった (図 1)。 pH6 で抽出した粗精製フコイダンを pH7、50~100℃で 0~6 時間加熱した試料溶液の抗腫瘍活性は 50℃、6 時間の加熱では抗腫瘍活性に変化は見られなかったが、加熱温度の上昇と時間の増加と従って抗腫瘍活性は低下し、100℃、6 時間の加熱では抗腫瘍活性は低下し、100℃、6 時間の加熱では抗腫瘍活性は低下し、100℃、6 時間の加熱では抗腫瘍活性が認められなかった (図 2)。

試料	水分(%)	灰分(%)	構成糖 (mg/100mg sample)			ウロン酸	硫酸基		
			フコース	マンニトール	グルコース	フルクトース	合計	(mg/100mg)	(%)
SIGMA製フコイダン	3.5	43.1	30.8	0.0	0.0	0.0	30.8	2.3	28.6
pH1抽出粗精製フコイダン	4.8	40.7	17.1	1.4	0.0	0.0	18.5	2.5	21.1
pH2抽出粗精製フコイダン	4.5	41.5	13.9	1.5	0.0	0.0	15.4	2.2	25.2
pH3抽出粗精製フコイダン	4.0	36.3	19.3	1.6	0.0	0.0	20.9	5.3	27.7
pH4抽出粗精製フコイダン	4.3	33.5	17.3	2.1	0.0	0.0	19.4	7.1	21.4
pH5抽出粗精製フコイダン	4.3	31.7	14.7	2.2	0.0	0.0	17.0	9.6	18.8
pH6抽出粗精製フコイダン	4.2	36.4	15.9	2.0	0.0	0.0	17.9	7.4	26.6
精製フコイダン	26.0	31.4	27.6	0.0	0.0	0.0	27.6	4.4	34.1

表 1 各試料の成分分析

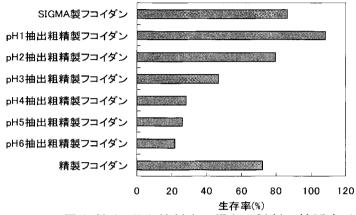


図1 抽出 pH と精製度の異なる試料の抗腫瘍活性

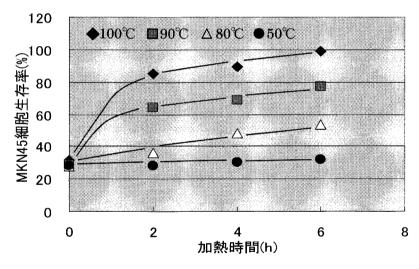


図2 中性加熱試料の抗腫瘍活性

4 要 約

ガゴメを原料としたフコイダンの製造では、酸性条件下の加熱処理が抗腫瘍活性に影響を与える可能性が示唆された。このため、その機能性を利用した食品素材の製造には製造条件を十分吟味する必要があると考えられた。

(重点領域特別研究)

共同研究機関: 共成製薬(株)、北海道大学大学院農学研究科

道産食材の機能性を活かした新規加工食品の開発 (H16~17)

ープロピオン酸菌を利用した乳製品の開発ー

食品開発部畜産食品科 川上 誠 応用技術部機能開発科 渡邊 治 食品開発部 田中常雄

1 研究の目的と概要

北海道では乳製品加工が盛んで各種発酵乳製品が製造されている。しかしながら、 道内中小企業でヨーグルト、チーズ製造に使用されるスターター(乳酸菌など乳を 発酵させるための種菌)は欧州などからの輸入品に依存しているため、北海道地域 に根ざした乳業用スターター開発の要望や相談が道内の企業から寄せられている。

プロピオン酸菌はチーズのスターターなどに利用される有用微生物のひとつであ り、整腸機能、ビフィズス菌増殖促進機能などの保健機能が期待されている。

当センターでは道内の乳素材に由来するプロピオン酸菌など有用微生物を分離、これを利用した乳製品の開発を検討し、これまでに(発酵乳の試作を行なった。今回、分離菌を用いたガスホール形成型ナチュラルチーズの製造を検討した。

【予定される成果】

北海道産乳を利用した高付加価値製品開発の促進

2 試験研究の方法

試作のプロピオン酸菌発酵チーズは図1に示す工程で製造し、2kg サイズに成型した。スターターには分離した *Propionibacterium* および市販の乳酸菌 *Lactobacillus helveticus* を使用し、脱脂乳培地中35℃で培養後、それぞれ0.05%、1%添加した。加塩は圧搾前にチーズカードをミリングして加塩する乾塩法と、圧搾後に飽和食塩水で加塩するブライン法との二方法で行なった。熟成はチーズを加塩、乾燥後、一次熟成25℃、2~3 週間、二次熟成5℃、6 ヶ月の二段階で行なった。対照として中温性の混合乳酸菌を使用した半硬質系乳酸発酵チーズを常法に従い製造した。

チーズ香気成分は SPME ファイバーcarboxen/PDMS を用いて香気成分を捕集後 GC·MS で分析した。

3 実験結果

一次熟成時、ガスホール形成に伴うチーズの膨張は真空包装を施したリンドレスタイプで1週間目に、無包装のリンデットタイプで2週間目に認められた。分離のプロピオン酸菌は嫌気状態での発育が顕著であるため、チーズ内部が嫌気状態になるリンドレスタイプでガスホール形成が早まったと考えられる。また、加塩方法による影響については、乾塩法ではチーズ全体に細かいガスホールが形成されたが、

ブライン法ではチーズ中心部にガスホールが集中して形成された。乾塩法では熟成期間を通して塩分濃度が均一であるのに対し、ブライン法ではチーズ内部に塩分濃度の勾配が発生し、高塩濃度であるチーズ周辺部でプロピオン酸菌の発育が阻止されたためと推察される。このようにプロピオン酸菌チーズのガスホール形成はチーズ内部の嫌気度、製造方法に影響されることが明らかになった。

熟成 6 ヶ月目でのチーズ香気成分分析クロマトグラムを図 2 に示す。プロピオン酸菌発酵チーズは対照の乳酸菌発酵チーズと全く異なる香気成分パターンを示した。また、官能検査の結果も乳酸発酵チーズに比べ穏やかなフレーバーで、独特のナッツ様フレーバーを示した。

熟成期間を通して、プロピオン酸菌チーズは乳酸菌発酵チーズに比べ水溶性窒素量、遊離アミノ酸量などが低く、熟成が遅延する傾向が認められた。これは使用したスターターのタンパク質分解能力に起因するものと考えられ、熟成促進にはタンパク質分解能の高い乳酸菌スターターなどの併用が有効であることが示唆された。



図1 試作チーズの製造工程

図2 試作チーズの香気成分パターン

4 要 約

昨年度までに北海道産の乳素材より乳製品に利用可能なプロピオン酸菌を分離し、これを用いた乳製品の試作を行なった。分離プロピオン酸菌を用いた発酵乳は酸味が穏やかなマイルドな試作品となった(昨年度)。また、プロピオン酸菌発酵チーズは従来の乳酸菌発酵チーズとくらべ、特徴的なフレーバーとガスホールを形成する特徴的な試作品となった。

(重点領域特別研究)

共同研究機関: (有)十勝しんむら牧場、北海道大学大学院農学研究科

ラクトバチルスプランタラム HOKKAIDO 株を用いた機能性豆乳ョーグルトの 製品化 (H17)

> 食品バイオ部バイオテクノロジー科 中川良二 八十川大輔 食品開発部水産食品科 能登裕子 応用技術部 熊林義晃

1 研究の目的と概要

我々はこれまでの研究でラクトバチルスプランタラム HOKKAIDO (HOKKAIDO 株) と名付けた乳酸菌を利用してヨーグルト様の発酵豆乳を試作した。また、HOKKAIDO 株が生きたまま腸に到達し整腸作用などの機能性を示すこと、さらに、本発酵豆乳がビフィズス菌の増殖効果を持つ可能性を示した。本研究では豆乳ョーグルトを試作販売して商品として定着させるための問題点を明らかにし、優れた製品とするための技術開発を行った。

【予定される成果】

HOKKAIDO 株および道産大豆を使った新たな高機能性食品としての豆乳ョーグルトの製品化

2 試験研究の方法

発酵豆乳の試験販売;インターネットによる調査や消費者ニーズなどを検討し、 発酵条件等を変えて豆乳ヨーグルトの試験販売を行った。

発酵豆乳のヒト摂取試験;試験の趣旨を理解し、試験への参加を承諾した健康な成人を被験者として当センターの倫理委員会の承認を得て実施した。被験者には試験販売用に製造した発酵豆乳 80g/日を第一グループでは9日間、第2グループでは14日間、1日1回食してもらい、摂取前から摂取後まで約4週間にわたって糞便に関するアンケートおよび週に1度の糞便提供をお願いした。提供を受けた糞便試料はLactobacilli MRS 寒天培地(以下、MRS と略す)およびTOSプロピオン酸寒天培地(以下、TOS と略す)を用いて培養した。

発酵豆乳の抗酸化活性;発酵豆乳の凍結乾燥粉末を調製し、これを用いて β -カロテン退色法、ロダン鉄法により in vitro での抗酸化活性を測定した。また、ラットのアルコール性胃粘膜障害を指標とした in vivo での抗酸化活性を測定した

3 実験結果

発酵豆乳の試験販売;インターネットによる調査や消費者ニーズなどを基に、HOKKAIDO株、道産大豆、他の材料も植物原料のみを使い、発酵豆乳という商品名でプレーンタイプと熟成タイプの2種類を試験販売した(図1)。

図. 試験販売した発酵豆乳 左がプレーンタイプ、右が熟成タイプ

発酵豆乳のヒト摂取試験;被験者は20代から80代の男女合わせて17名で、第一グループは10名、第二グループは7名であった。MRSでの培養の結果から、発酵豆乳摂取前の乳酸菌数には 1.8×10^6 から 2.1×10^9 cfu/gと個人差が大きかったが、摂取後には 1.5×10^7 から 2.8×10^9 cfu/gとなり、個人差が狭まった。しかし、その後は減少し、測定の最終日には 8.0×10^5 から 1.1×10^9 cfu/gとなり摂取前よりも幾分少なくなった。また、ビフィズス菌数は 1.9×10^8 から 1.9×10^{10} cfu/gであったが、摂取後には 1.9×10^9 から 4.4×10^{10} cfu/gとなった。最終的には 2.1×10^8 から 2.8×10^{10} cfu/gとなり、摂取前とほぼ同数にまで減少した(図2)。以上の結果から、発酵豆乳の摂取によって乳酸菌数またはビフィズス菌数が少ない被験者に対して平均的な菌数にまで高める効果のあることが示唆された。しかしながら、その効果は恒常的なものではなく、菌数の維持には発酵豆乳の摂取を続ける必要があろうと考えられた。

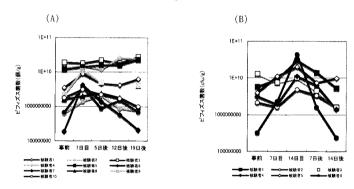


図. 発酵豆乳摂取によるヒト糞便中のビフィズス菌数の変化 (A) が第一グループ、(B) が第二グループ

発酵豆乳の抗酸化活性;発酵豆乳は β -カロテンおよびロダン鉄法によりリノール酸の自動酸化をそれぞれ 18.4%、66.9&抑制した。また、ラットに 200mg/kgBW.の発酵豆乳を投与したとき胃粘膜障害を 51.7%抑制した。これらの結果から発酵豆乳の摂取による生体内での抗酸化作用が期待された。

4 要約

道産大豆と植物原料のみからなる発酵豆乳を試作販売し、さらに、その機能性としてヒト摂取試験および抗酸化活性試験を行った。ヒト摂取試験から乳酸菌数とビフィズス菌数では正常化する効果が示され、抗酸化活性試験からは高い抗酸化力を有する可能性が示唆された。

(共同研究機関:酪農学園大学、(株)豆太)

風味と機能性に優れた水産発酵調味料とそれを活用した水産加工品の開発 (H16~H17)

> 食品バイオ部発酵食品科 吉川修司 食品開発部水産食品科 錦織孝史 企画調整部技術支援課 田中 彰 食品開発部農産食品科 太田智樹

1 研究の目的と概要

近年、新たな調味料として魚醤油の需要が増大しているが、従来品は魚臭さが強いために用途が限定されている。そこで、当センターではH14、15年度に課題の解決に取り組み、耐塩性の乳酸菌および酵母による発酵技術を活用し、魚臭さが無く、風味が豊かな調味料を開発し特許出願に至った。本研究では開発した技術の実用化に必要な技術開発および商品化を目的とする。前年度は発酵温度が色調や風味などの品質や微生物叢に与える影響の把握を行ったので、本年度は原料部位別および麹とスターターの添加の有無別の遊離アミノ酸量、DPPHラジカル消去活性を調べた。

【予定される成果】

- ・高品質化した水産発酵調味料の開発と実用化
- ・風味を最大限に活かした加工品および加工調味料の開発

2 試験研究の方法

原料のシロサケは日高産の C ブナを用いた。大麦麹、耐塩性の乳酸菌および酵母は(株) ビオックより入手したものを用いた。

細切したシロサケをチョッパーによりミンチ状にし、原料の 20 %重量の塩、および麹を加えてよく混合してモロミとした。モロミを 35 $\mathbb C$ で 12 週間発酵した後、遠心分離して得た液体を 85 $\mathbb C$ 30 分加熱後、1 %量のセライトを加えてよく撹拌し、放冷後、吸引濾過して試作品を得た。なお、麹およびスターターの添加の有無別の試験では、スターターと麹を添加しないもの(無添加区)、麹のみを加えたもの(麹のみ区)、麹とスターターを添加したもの(3 種類のスターターを組み合わせを変えて添加した 7 区)の計 9 区を設定した。

遊離アミノ酸組成は試料にエタノールを加えて除タンパク後減圧乾燥し、0.02N 塩酸に溶解したものを試料として全自動アミノ酸分析計で測定した。

DPPH ラジカル消去活性は宮下らの方法(日水誌;65巻 p488)に従って行った。

3 実験結果

原料部位別の調味料の遊離アミノ酸量は、頭部を原料にすると最も低く、肉部を 用いると最も高くなった。また、内臓および肉部を用いると、頭部に比べて短期間 で遊離アミノ酸量が高まったが、内臓を用いた試験区ではあまり増えず、肉部では 発酵期間が長くなるにつれて増加した。これらの結果は原料部位の溶解性(プロテアーゼの効きやすさ)およびタンパク質含有量の差を反映したものと考えられた。

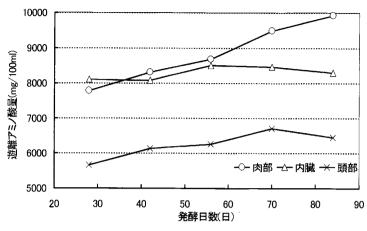


図1 原料部位別の水産発酵調味料中の遊離アミノ酸量

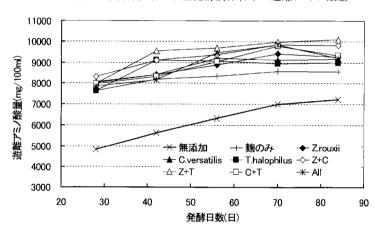


図2 スターターと麹の添加別の水産発酵調味料中の遊離アミノ酸量

スターターと麹の添加別ではスターターを加えた全ての試験区で遊離アミノ酸量が、麹のみを使用した試験区および無添加区を上回った。

原料部位別のDPPHラジカル消去活性の強さは、内臓、肉部、頭部の順で、スターターと麹の有無別では麹のみ使用区、麹とスターター添加区、無添加区の順で、色調の濃さ(ODsso)と同一の傾向を示した。

4 要 約

シロサケを原料とした水産発酵調味料を原料部位およびスターターと麹の添加有無別に調製し、遊離アミノ酸量および組成、DPPHラジカル消去活性を調べた。遊離アミノ酸量は肉部を用いると最も高くなり、スターターの添加により加えた試験区全てにおいて、遊離アミノ酸量が、麹のみ区および無添加区を上回った。

DPPHラジカル消去活性の強さは原料部位では内臓が、スターターと麹の有無別では麹のみ使用区が最も高く、色調の濃さと同一の傾向を示した。

(重点領域特別研究)

共同研究機関 釧路水産試験場・北海道大学大学院水産科学研究科・(株) マルデン

1-4 民間等共同研究

におい識別装置を用いたパンの香気評価に関する研究 (H17) 応用技術部プロセス開発科 奥村幸広 清水英樹

1 研究の目的と概要

最近は、消費者嗜好の多様化に伴い、香りや食感の異なる多種多様のパンが製造されている。パンの香りの起源は主に、原料・発酵・焼成の三つであると言われており、特に発酵・焼成過程において生成される香気成分が、パンの香りとして重要と考えられている。パンの香りの特性は、主に官能試験によって評価されているが、(1)一度に評価できる試料数が少ない、(2)官能評価の結果を客観的に表現することが難しい、などの課題が指摘されている。

本研究では、従来の香り分析手法とは異なる評価原理を持つ「におい識別装置」を利用して、パンの香り特性の評価を試みた。

【予定される成果】

・パン酵母開発における香りの特性評価の効率化

2 試験研究の方法

(1)におい識別装置: 香気成分に対して反応性の異なる6種類のセンサと、香気成分捕集管を有した「FF-1」(島津製作所)を使用した。同一サンプルに対して、表1に示した4種類の測定条件を適用した。

(2)供試試料: 2cm 厚の角食パンより中心部 4cm 四方の切片を調製した。切片を無臭バックに入れ、2L の窒素ガスを加えて一晩静置し、におい測定用ヘッドスペースガス(HSV)を調製した。測定に供したパンには、市販品 6 点のほか、日本甜菜製糖(株)総合研究所にて試験用に調製したもの(パン酵母のみを変えた3点)を用いた。

	表1	におい識別装置の測定条件	(主要な条件のみ抜粋)
--	----	--------------	-------------

	サンプ	リング	ドライ	パージ	加熱追出
(a)【全香気】	40°C	6 秒	40℃	90 秒	220℃
(b) 【トップノート*1	40°C	6 秒	40℃	90 秒	100℃
(c)【エタノール除去】	65℃	6 秒	65℃	90 秒	220℃
(d) 【ラストノート*2	4 0℃	6秒	100℃	90 秒	220°C

*1【トップノート】・・・最初に感じる軽いにおい

*2【ラストノート】・・・後から感じる重いにおい

3 実験結果

パンの香りは、エタノール濃度が非常に高いことが知られている。そこで、事前に試薬エタノールから調製した標準 HSV を用いて、濃度と出力の関係を確認し、センサの有効出力範囲を決定した。続いて市販パンより調製した HSV の測定を行ったところ、この有効範囲を超えた出力を示した。すなわち、パン HSV はエタノールが過剰な状態と考えられ、200 倍程度の

希釈によって有効な測定が可能となることが明らかとなった。

次に、市販パン(4 社、6 点)および試験調製パン(3 種類の酵母を使用したもの)より得られた HSV(200 倍希釈)について、表 1 に示した 4 条件で測定を行い、クラスター分析によって香りの類似性の評価を検討した。その結果、市販パンは、メーカーごとにクラスターを形成する傾向が強く、また、酵母のみを変えた試験用パン同士も隣接したクラスターを形成する傾向にあることから、パンの香りは、原料組成や製法などの要素に大きく起因することが示唆された。

測定条件ごとの香りのクラスターを比較すると、(a)および(b)と、(c)および(d)では樹状図が大きく異なっていた。これは(a),(b)ではエタノールの影響がほぼ支配的であり、(c),(d)ではエタノール以外の香りが評価されていることを示している。このように、複数の測定結果と官能評価とを関連付けることで、従来よりも簡便なパンの香り評価が可能になると考えられる。

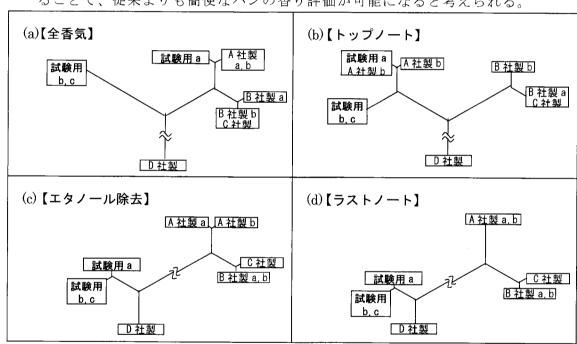


図1 パン HSV 中の香りのクラスター分析による樹状図 枝の長さは香りの類似性を示し、枝が短いほど香りが類似している

4 要約

従来まで、高エタノール HSV の測定には、専用の捕集管が必要であったが、 HSV の適切な希釈と測定条件の選択によって、高エタノール HSV からエタノールの影響を排除することが可能であった。パンの香りはエタノールを含む【トップノート】とエタノール以外の【ラストノート】で評価結果が大きく異なったことから、本試験による評価法と官能評価を関連付けることによって、官能評価の負担を軽減させる簡便なスクリーニング手法として利用できる可能性が示唆された。

(共同研究機関:日本甜菜製糖株式会社)

抗菌機能を有するホタテ貝殻を活用した製品開発 (H17) 応用技術部機能開発科 柿本雅史 濱岡直裕 プロセス開発科 清水英樹

1 研究の目的と概要

北海道内では、年間 20 万トン以上のホタテ貝殻が食品加工の副産物として発生している。しかし、貝殻の半分近くは未利用な資源であったため、これらに付加価値を与え、有効な資源として活用することが課題であった。当センターでは、焼成したホタテ貝殻カルシウムの抗菌機能に着目し、食品を汚染する細菌やカビ・酵母に対する抗菌効果の定量化を行うとともに、野菜などの食材殺菌に使用した際の殺菌効果を明らかにしてきた。本研究では焼成したホタテ貝殻カルシウムの抗菌機能に関する蓄積技術を基に、ホタテ貝殻を活用した抗菌プラスチックの開発について検討した。

【予定される成果】

- ・ホタテ貝殻カルシウムを用いた抗菌プラスチック加工品の開発が可能となる。
- ・ホタテ貝殻の新規用途開発が図られ、有効な資源としての活用が可能となる。

2 試験研究の方法

1) 抗菌プラスチック試料の作製

ホタテ貝殻を高温で焼成し、微粉末化したホタテ貝殻カルシウム製剤(北海道共同石灰製シェルライム HT、以下ホタテ Ca)をポリプロピレン樹脂に $1\%\sim50\%$ 添加後、混練し成型した(50 ± 2 mm 角、厚さ2mm)。

2) 抗菌効果の評価方法

抗菌プラスチック試料(以下試験片)の抗菌効果の評価は、「抗菌加工製品-抗菌性能試験方法・抗菌効果 JIS Z2801:2000」に準拠した。供試菌株には、Escherichia coli NBRC 3972 を用い、前培養した供試菌を 1/500 普通ブイヨン培地にて希釈、分散させ $10^{\circ} \sim 10^{\circ}$ CFU/ml に調整し菌液とした。滅菌シャーレに試験片を入れ、試験片上に菌液を 0.4ml 接種し、 40 ± 2 mm のフィルムにて覆い菌液を試験片に均一に接触させ 24 時間 30 % にて培養した後、回収した菌液の生菌数を測定し抗菌効果の有無を評価した。

3 実験結果

接種直後で 10° CFU/ml であった回収菌液の生菌数は、24 時間培養後にはホタテ Ca の無添加 (無加工試験片) および 1%添加試験片の場合では 10° CFU/ml、5% および 10% 添加試験片の場合では 10° CFU/ml まで増加した(図 1)。一方、20% および 30%添加試験片場合では生菌数は 10° CFU/ml であり、生菌数に変化は認められず静菌的な効

果が示され、40%添加では 10³CFU/ml、50%添加では検出限界以下まで生菌数が減少し、殺菌的な効果が示された。

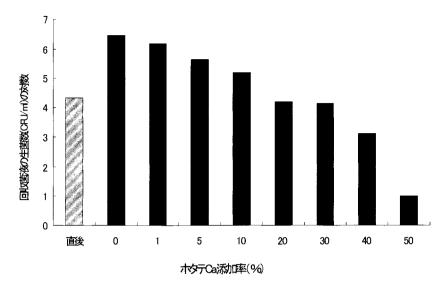


図1 接種直後と24時間後の回収菌液の生菌数

JIS Z2801:2000 において抗菌効果は、抗菌活性値(無加工試験片の生菌数の対数 - 抗菌加工試験片の生菌数の対数)が 2.0 以上になることと定義されている。

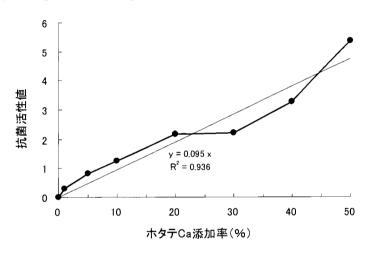


図2 ホタテ貝殻カルシウムの添加率と抗菌活性値

各試験片の抗菌活性値とホタテ Ca の添加率との間には正の相関が認められ (図2)、抗菌活性値が 2.0 以上となり、抗菌効果を有すると判定されるためには、ホタテ Ca を 20%以上添加する必要があることが明らかになった。

4 要 約

ポリエチレン樹脂に焼成したホタテ貝殻カルシウム製剤を混練した抗菌プラスチックを開発した。当該抗菌プラスチックが抗菌効果を発揮するためには、ホタテ貝殻カルシウム製剤を20%以上添加する必要があった。

(民間共同研究、共同研究機関:北海道共同石灰(株)

協力機関:工業試験場材料技術部)

アロニアを用いたブランデー・リキュールの開発 (H17)

食品バイオ部発酵食品科 田村吉史 吉川修司 食品バイオ部バイオテクノロジー科 橋渡 携

1 研究の目的と概要

大滝村では、平成 13 年度に村としてアロニアを奨励作物に指定して産地化を図っており、その加工利用方法の確立が必要となっている。当センターでは、平成 10~12 年度に農林水産省の受託研究として「アロニアの食品加工利用に関する研究」を、平成 14 年度には大滝村との共同研究で「アロニアを用いた新規食品の開発」を行い、アロニア搾汁残渣からの食酢製造を検討している。さらに平成 16 年には当センターの研究発表会において「搾汁残渣を利用したアロニアパンの製造」について研究発表を行っている。平成 16 年度には大滝村と「アロニアを用いた果実酒などの加工食品の開発」を検討し幅広い用途へ利用可能であることが示唆された。本共同研究ではさらにアロニアを利用した食品として蒸留酒及びリキュールを開発する。シソ焼酎のようにアロニアの風味をほのかに持つブランデーと、アロニアの色と香りそして機能性を生かしたリキュールとした。

【予想される成果】

- ・アロニアを用いたブランデー・リキュールの商品化
- ・アロニア加工品の多様化

2 試験研究の方法

アロニア果実酒の果実は、凍結保存果実を解凍し、チョッパーによる破砕を行ったものを使用した。ブランデーの糖源としてナツメヤシの濃縮液(デーツ)を用いた。ブランデーはデーツを希釈して Brix30 とした原液を作成し、ここへ 0 ~ 20%のアロニアを添加しワイン用酵母を用いて 20 $\mathbb C$ でアルコール発酵を行った。発酵終了後2重のガーゼによりろ過し、ろ液を蒸留した。蒸留は加熱温度 120 $\mathbb C$ で常圧により行った。リキュールは、アルコールベース及び清酒ベースによる試作を行った。アルコール濃度によるポリフェノール抽出速度の検討には、アルコール濃度 20 ~ 100%でアロニアと等量混合し 20 $\mathbb C$ で抽出を行った。ポリフェノールの測定はフォーリンデニス法により行った。

3 実験結果

アロニアブランデーの蒸留前のもろみ発酵液のアルコール量の変化を図1に示した。アルコール発酵ではデーツのみではアルコールの生成が遅く、アロニアの混合量が増加すると発酵が活発となった。アロニアが混合されることにより栄養成分が増加し発酵が旺盛になったものと考えられる。もろみのアルコール濃度は 15%程度になるように糖量を調整したが、いずれの試験区も予定よりも低いアルコール濃度になった。各もろみは常圧で蒸留を行い 4L から 600ml を回収した。回収した蒸留液はアルコール分 40%に加水調製し、1週間冷蔵庫で保存した後、ケイソウ土

ろ過を行いアロニアブランデーとした。アロニアは香りの強い果実ではないため、 紫蘇などと比較すると特徴は弱いものとなった。

アロニアリキュールでは、アルコールベースと清酒ベースの2種類を作成した。アルコール濃度とポリフェノール抽出量の変化を図2に示した。抽出はアルコール濃度が高いほど早く、100%では3日間、80%では10日間で最大量に達するが、60%以下では13日間でも最大量に達することはなく、20%では半分程度のであった。リキュール作成に於いては、高濃度アルコールで短期間に抽出を行いその後希釈する方法が効率的である。そこでアルコールベースでは、醸造用アルコールとして入手できる60%アルコールを用いて最終的に5~20%になるようにホールのアロニア果実を加え、2週間抽出した後アルコール分20%となるように加水し、しょ糖を10%混合してさらに2週間抽出を行った。清酒ベースでは清酒に5~20%のホールのアロニア果実を加え、2週間抽出した後、しょ糖を10%混合してさらに2週間抽出を行った。両抽出液は果実を取り除きケイソウ土ろ過を行い、再び果実を戻してアロニアリキュールとした。アルコールベースでは赤ワインに近い色となり、清酒ベースではロゼワインに近い色となった。どちらも果実の香りがよくでていた。

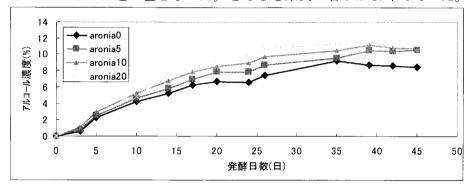


図1 アロニアブランデーもろみのアルコール濃度変化

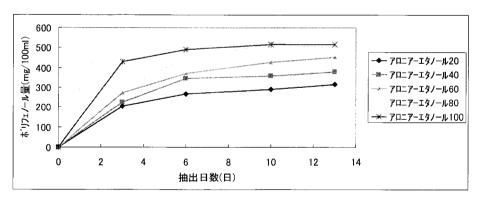


図2 アルコール濃度とポリフェノール抽出量の変化

4 要約

アロニアを用いたブランデーとリキュールを作成した。ブランデーはデーツをベースに 5 ~ 20%のアロニアを混合した。アロニアの香りをほのかに持っていた。リキュールはアルコールベース及び清酒ベースの2種類を作成した。両リキュールともアロニアの香りを持つ風味良好なものとなった。

(共同研究機関:大滝村)

タマネギ搾汁液を使ったタマネギ酒の開発

食品バイオ部発酵食品科 田村吉史 吉川修司 食品バイオ部バイオテクノロジー科 橋渡 携

(H17)

1 研究の目的と概要

北海道のタマネギ生産量は約70万トンで、全国生産量の約60%を占めている。 近年輸入量の増加により道産タマネギの需要は低迷傾向にあり、産地廃棄の事態も 生じている。このため道産タマネギの有効な利用方法が望まれている。

㈱グリーンズ北見では、加工処理工程においてタマネギから出てくるエキス(タマネギ搾汁液)も回収されている。この搾汁液から北海道立オホーツク圏地域食品加工技術センターでは、ロゼワインのような色を持つ飲料を試作し、当センターではさらにアルコール発酵を行い、ロゼワイン風のタマネギ酒を試作した。しかし、いずれも香りに難点があることが指摘された。平成 16 年度には香りをかなり改善するため加熱方法、乳酸菌種などの検討を進た。本年度の共同研究では、タマネギ搾汁液からタマネギ酒を作製する工程をさらに検討し、タマネギ臭さを抑えたタマネギ酒の製造方法を検討した。

【予想される成果】

- ・タマネギの需要拡大
- ・タマネギ酒の商品化

2 試験研究の方法

タマネギ搾汁液はグリーンズ北見㈱より入手して用いた。通常の搾汁液からオートクレーブによる滅菌処理後ろ過し浮遊物を除去した。また、加熱により2倍に濃縮された搾汁液も用いた。両搾汁液に、Lactobacillus casei subsp casei、Lactobacillus plantarum HOKKAIDO、Leuconostoc mesentroides、Pediococcus pentosaceus の4種類の乳酸菌により乳酸発酵を行い、ワイン用酵母 EC1118 及び協会 901 号でアルコール発酵を行った。麹を補糖分として使用したタマネギ酒は、オートクレーブ処理した後沈殿を除去した通常搾汁液にアルコール分が 10%程度になるように麹により補糖し、乳酸菌による発酵を行い次いでワイン用酵母 EC1118 による発酵を行った。

3 実験結果

乳酸発酵は昨年と同様に P. pentosaceus にこよる場合が最も風味が良かった。2 倍濃縮タマネギ搾汁液は Brix が 2 倍、加熱により沈殿物が除去されているため、ろ過の必要もない。乳酸菌無添加と乳酸発酵による風味が良好な P. pentosaceus による乳酸発酵後 __

表 1 2 倍濃縮搾汁液による試験区

乳酸菌	酵母	発酵温度
無し	EC	30
無し	EC	15
無し	901	30
無し	901	15
ペディオ	EC	30
ペディオ	EC	15
ペディオ	901	30
<u>^゚ディオ</u>	901	15
	無ししし、 かっずれ へ [®] っずれ	無し EC 無し EC 無し 901 無し 901 を 10

のアルコール発酵時の試験区を表1にアルコール濃度の変化を図1に示した。2倍 濃縮搾汁液は発酵は良好であるが、タマネギ風味が強く飲料としては通常搾汁液の 方が良好であった。

麹による補糖は、表 2 に示す 6 試験区を設定した。乳酸菌は P. pentosaceus を用いた。麹の添加量は清酒の仕込量から換算してグルコース 100g に相当する量として 1L 当たり 130g を添加した。麹の事前糖化処理を行った試験区は、60 $^{\circ}$ $^{\circ}$ 、

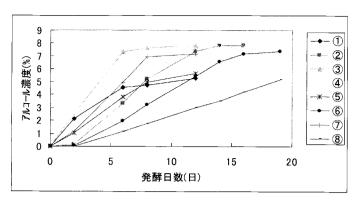


図1 2倍濃縮搾汁液によるアルコール発酵

5 時間保温して糖化させた後、乳酸菌及び酵母の添加を行った。各試験区のアルコール発酵状況を図2に示した。グルコース添加区では乳酸発酵を行うとアルコール発酵が遅くなりアルコール濃度も低くなるが、麹添加区では糖化処理の有無に影響なく良好にアルコール発酵が進行した。補糖方法としての麹添加は良好でありグルコース添加と遜色なかった。しかしアルコール発酵終了後すぐに産膜酵母等の発生が見られ、アルコール濃度の減少や異臭の発生が起きる。産膜酵母等の発生は高温による糖化処理によりかなり抑制可能である。麹の使用によりタマネギ臭はほとんどなくなり、若干麹臭を感じるものとなった。乳酸菌と麹を用いることでタマネギ臭のない風味が改善されたタマネギ酒となった。

表2 麹使用によるタマネギ酒の試験区

	<u> </u>			
I	タマネギ搾汁液1L		LABなし	
П	タマネギ搾汁液1L		LABなし	
Ш	タマネギ搾汁液1L	グルコース100g	LAB有り	
IV	タマネギ搾汁液1L	麹130g	LAB有り	
V	タマネギ搾汁液1L	麹130g	LABなし	60℃、5Hr加熱
VI	タマネギ搾汁液1L	麹130g	LAB有り	60℃、5Hr加熱

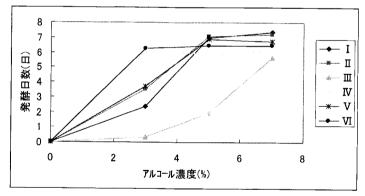


図1 麹を使用したタマネギ酒の発酵によるアルコール量の変化

4 要約

2 倍濃縮搾汁液と麹添加によるタマネギ酒の臭いの低減と風味の改善を行い、麹を添加することによりタマネギ臭さが低減されタマネギ酒の飲みやすさが改善された。

(共同研究機関:グリーンズ北見㈱)

1-5 受託試験研究

野菜抽出酵素液の摂取がヒトの腸内細菌叢に与える影響 (H17) 応用技術部 長島浩二 食品バイオ部バイオテクノロジー科 八十川大輔

1 研究の概要と目的

(株)ケルプ研究所が製造販売している野菜抽出酵素液(F&E)は、葉菜類、花菜類、果菜類、根菜類、柑橋類、果実類、海藻類などの自然植物を原材料とし長時間かけて自然発酵させ、人体に不可欠な必須アミノ酸や、カルシウム、マグネシウムなどのミネラル成分、さらにビタミン類を豊富に含む植物エキス飲料であり、肝機能障害改善効果を示唆する臨床データが得られている。また、予備試験において腸内菌叢におけるビフィズス菌の割合を増加させる効果が認められている。本研究は、F&E 摂取による腸内細菌叢への影響を調べ、その健康機能性について考察することを目的とする。

【予定される成果】 健康食品の科学的根拠が得られる。

2 試験研究の方法

被験者(19 から 24 歳までの男性 17 名、女性 5 名の計 22 名、平均年齢 20.7 歳)に F&E を 14 日間,一日当たり 100 ml 摂取して貰い、摂取前(D_0),摂取開始 7 日後(D_7),14 日後(D_{14})および摂取中止 21 日後(D_{35})に採便した。これらの便サンプルから、長島らの報告(D_{14})に従い、ジルコニウムビーズ処理と塩化ベンジル抽出により D_{14} を抽出し、この D_{14} 用いて P_{14} PCR・TRFLP 法により腸内細菌叢の解析を行った。 F&E による便宜的分類単位(OTU、特定の細菌グループに対応している。表 1 参照)の摂取非摂取時での増減の程度は、((D_7+D_{14})/(D_0+D_{35}))・1 の式に従って計算した。また、試験期間中、体調や便の状態についてのアンケートを実施した。ヒト試験はヘルシンキ宣言に則って実施された。

3 実験結果

全体で 24 の OTU が検出されたが、TRFLP プロファイルは各被験者によって様々であった。各 OTU 量の非摂取時に対する摂取時の増減割合を算出し、菌叢に対する F&E の影響評価を行った。表 1 にその結果をまとめた。値がプラスでは増加を、マイナスでは減少を示し、数値は非摂取時に対しての増減分の割合を示している。F&E 摂取により、Bifidobacterium 属に対応する OTU 124 は、50%の被験者で 25%以上の増加を、25%の被験者で 25%以上の減少を示した。残りの被験者では増減が 25%以内であった。一方、ヨーグルトあるいはオリゴ糖製品を目常的に摂取している被験者を除外すると、12 人中 9 人(75%)で OTU 124 の 25%以上の増加が観られ、この比率は他の OTU の場合に比べて高い傾向にあった(表 2)。被験者間での応答の違いは、各人の遺伝的背景や食事内容の違いを反映したものと思われる。

また、表1のデータから、OTU¹²⁴ と *Clostridium* cluster IVに対応する OTU⁷⁴⁹ で は、その増減は相反傾向にあることが示された。以上の結果より F&E の整腸効果 が期待されたが、体調と糞便状態のアンケート調査では摂取非摂取時で大きな違い は認められなかったことから、効果の実感にはより長期間の摂取が必要と考えられ た。(1) Nagashima K. et al. (2003) Appl Environ Microbiol, 69:1251-1262.

表1 F&E 摂取による各 OTU 量の変化

	×1-0-	<u>u 1</u>	Oic		1201																		
細菌 グループ	試料名	Α	В	C	D	<u>E</u>	<u>G</u>	H	I	J	<u>K</u>	L	$\underline{\mathbf{M}}$	Q	R	<u>s</u>	T	<u>v</u>	$\underline{\mathbf{w}}$	х	Y	<u>Z</u>	α
名	性別	М	М	М	М	М	М	M	M	М	M	M	M	M	M	M	M	М	F	F	F	F	F
Cl 14a			-1 00														*****						
Cl 9							-0 46						-1 00	4.45	-0.63		20	-0 38	-1 00	-1 00		-1 00	ю
Bıf		0.89	-0 32	0.80	-0 62	-0 66	-0 09	0.36	1 13	0.42	0.02	0.29	-0 62	0.38	0 47	0 92	0.41	0.71	0.11	-0.29	0 02	-0.29	0.16
CI 4		-0 19	0.15					-0 17			∞	-0.46							1.71		-0 02		
Pre													-1 00										2.89
Lac		00	-0.14	-0 14	-0.17	-1 00	-0 17	-1.00	0.36	0 20	œ	-0 16	-1 00	-0.18	-0 19			8 80	0.82	-0 08	0 25	-0.89	0.02
			00		00	-1.00	-1 00							∞					-0 62				
Bac, Cl 4		-0 42	0.00	2 53	1.75	-1 00	0.32	3 01		4 34		00	-1 00	0.51	-0 49		5.50	-0 71	0.69	3 43	-0.13	-0 28	1 87
Вас		0.02	0.98	-0 06	0 25	0.19	0 72	0.12	-0 42	0 09	-0 62	-0 34	0.70	-0.39	-0 34	-0 16	0 06	1.45	-0 63	-0 13	-0 46	-0 61	-0 26
Cl 14a		-0.23	-0.45	0.40	-0 06	0.28	-0 22	0 19	-0 28	-0 04	-0.55	0 01	0.52	0.00	0.38	-0 08	-0 23	-0 09	0 25	0.54	0.46	0.39	0.18
Cl 14a					00														-1 00				
Cl 14a			00			00		-1 00		-1 00			0.57										
Lac	,							-1 00		-1 00	-0 54												
																		-1 00					
Cl 16-19		-1 00		-1 00	no			0.07	-0 60		-1 00		-0 25		90				1.47				
Lac		-1 00	-1 00	-1 00	7 75	-1 00		-0 58	-0 04	-1.00	-0.13		-0 71	200	5 96		∞	0.34	0.18	-1 00	oc		0.54
4		-0.22	0.79	-0.51	0 49	0.33	-0 28	0 42	-0 15	-0 06	-0 16	-0.05	-0 70	-0 65	-0 40	-0.38	-0 23	-0 18	0.82	0.34	-0 08	0.39	-0.30
Cl 14a		-0.26	-0 21	-0 40	0.50	016	-0 15	-0 26	-0 24	-0 50		0.05	-0 13	-0.18	1 14	3 89	-0 04	-0.10	0 45	-0 13	0.18	0.52	-0 22
		-0 02				1 41	cc	00		∞		-1.00						0.20			-1 00		
Ci 11, 14a		0.18	-0 01	-0 09	-0.36	-0 50	-0 17	0.37	0 32	0 09	0 10	-0 20	-0 46	0.13	-0.13	0.36	-0 21	0.23	-0.31	-0 27	-0 28	-0 06	-0.09
El 14a, Ent		-0 33	1 08	-0 43	0.02	-0 07	0 16	-0 36	-0 28	-0 06	-0 02	0 19	0 22	0 43	10 0-	0.02	-0 10	-0.38	0 26	0.70	0.05	0.84	-0.24
Cl 14a		-0 19	-0 21	0.32	-0 32	-0 08	0 26	-0 32	-0 34	-0.30	-0.36	0 27	0.65	0.18	-0 15	-0 14	-0 14	-0 29	-0.12	0 21	0.85	0 12	-0 42
				9 36	00			-0 24		-1 00		υo							-1 00				
Cl 14a		0 26	0.12	-0.30	3.59	-0 26	0.08	-0 19	-0.52	0.13	0.32	0 00	0.31	-0 07	-0 10	-0 23	0 29	0 29	-0 07	-0 02	-0 25	0.37	-0.32
	知識 グループ 名 Cl 14a Cl 9 Buf Cl 4 Pre Lac Bac, Cl 4 Bac Cl 14a Cl 14a Lac Cl 16-19 Lac 4 Cl 14a Cl 1a	知識 大名	## 第	押機	大田田	新聞	対比学 性 別 M M M M M M M M M M M M M M M M M M	大学学校 大学校 大学学校 大学校 大		大学学校 大学校 大学学校 大学校 大学校	大学学校 大学校 大学学校 大学校 大	大き 大き 大き 大き 大き 大き 大き 大き	大きの	大き 大き 大き 大き 大き 大き 大き 大き	大き 大き 大き 大き 大き 大き 大き 大き	大き 大き 大き 大き 大き 大き 大き 大き	大き 大き 大き 大き 大き 大き 大き 大き 大き 大き	大き 大き 大き 大き 大き 大き 大き 大き 大き 大き			計画	計画	Math Math

下線の試料名は、この被験者が日頃ヨーグルトやオリゴ離製品を摂取していることを意味する。 Bif, Bifidobecteria, Bac, Bacteroides, Lac, Lactic acid bacteria, Ent; Enterobactriales, Cl. Clostridium cluster No

表2 OTUの増減に関する被験者数分布

OTU	細菌ケループ名		全体	Σ.	ヨーグルト、	、オリコ**	曹非喫食者	P値*
010	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	増	減	変化なし	増	減	変化なし	(対OTU124)
124	Bifidobacteria	11	6	5	9	1	2	_
469	Bacteroides	5	9	8	0	6	6	0.0052
494	Clostridium 14a	8	3	11	4	1	7	0.255
749	Clostridium 4	6	7	9	2	3	7	0.071
754	Clostridium 14a	5	4	13	1	4	7	0.024
919	Clostridium 11, 14a	3	6	13	2	0	10	0.082
940	Clostridium 14a, Enterobacteriales	5	5	12	2	4	6	0.074
955	Clostridium 14a	5	7	10	3	4	5	0.132
990	Clostridium 14a	7	5	10	2	4	6	0.074

増減が、>0.25の場合それぞれを「増」および「減」と、<0.25の場合「変化なし」とした。

4 要約

(株)ケルプ研究所製野菜抽出酵素液 (F&E) 摂取のヒト腸内細菌叢に対する影 響を調べ、その健康機能性について検討した。その結果、F&E 摂取はビフィズス菌 の割合を増加させると共に、クラスターIVに属するクロストリジウムの割合を減少 させる可能性が示唆され、その整腸効果が期待できた。

(受託試験研究、委託先:株式会社ケルプ研究所)

^{*} Fisher's exact testによる。

微生物・酵素を利用したネギ類の高付加価値加工品の開発 (H16~17) 食品バイオ部 槇賢治

1 研究の目的と概要

北海道はタマネギの大産地であるが、例年、規格外品が発生し、年によっては価格調整等のため産地廃棄が行われる。また、加工産業においては天地切り等による加工残さが恒常的に発生する。これら未利用タマネギの有効活用を図るため、昨年度は、酵素処理による食品素材化を試み、フラクトオリゴ糖を富化した付加価値の高いタマネギエキスを高収率に製造する技術を開発した。本年度は、エキス中のタマネギ特有の辛さを低減し、用途拡大を図る目的で、食品用活性炭を用いた風味改善方法を検討するとともに、新たな加工品を試作してエキスの利用法を提案した。

【予定される成果】タマネギエキスを利用した新規加工品の開発と商品化

2 試験研究の方法

(1) エキスの風味改善

食品製造用の粒状活性炭3種(クラレケミカル社製)を供試し、エキスを活性炭 層に自然流下させ、官能により処理前後の辛さの程度を比較した。

(2) 新規加工食品の試作

エキスを用いてタマネギチップスおよびタマネギゼリーの試作を試みた。また、酵素処理エキスは可溶性糖類含量が増加し、微生物による発酵利用性が高まると考えられたため、麹処理および乳酸発酵について検討した。麹処理は市販の米麹と玄米麹を用い、エキスに対し 20%添加して 40%で 2 日間静置し、可溶性糖類含量、アミノ酸含量等を測定した。また、乳酸発酵については、Lactobacillus.plantarum,Lactobacillus.rhamnosus および Lactococcus.lactis をスターターとしてそれぞれ $10^7/\text{m}$ 1 添加し、30%で 7 日間静置して \mathbf{L} - 乳酸量等を経日的に測定した。また、検討結果を踏まえて麹処理飲料および乳酸発酵飲料を試作した。

3 実験結果

風味改善については、供試活性炭すべてにおいてエキスの辛さが低減されたが、 その程度は活性炭の種類や重量あたりの処理量により異なり、重量あたりの処理量 が少ないほど辛さの低減効果は大きかった(表 1)。活性炭の選択および重量あたり の処理量を変えることによりエキスの辛さを任意に調節し、風味を改変できること が明らかとなった。

タマネギチップス、タマネギゼリーは表2および表3の配合で試作した。 麹処理については、米麹、玄米麹とも可溶性糖類含量が増加し、甘味が増大した。 また、アミノ酸の組成、含量が変化するとともに、γ-アミノ酪酸(GABA)が生 成した(図 1)。乳酸発酵については、Lactobacillus.plantarum でのみ発酵が順調に進行し、30°C、5 日間で約 3g/1 の乳酸が生成して穏やかな酸味が生じた(図 2)。

表1 活性炭重量あたりのエキス処理量と辛さの程度

処理量(ml/g)	対照	10	20	30	50	100
活性炭 I	+++	+	+	++	+++	+++
活性炭Ⅱ	+++	_	+	+	+	++
活性炭Ⅲ	+++	-	_	_	_	+

注:+の数は辛さの強さ 対照は無処理の場合

表2 タマネギチップスの配合

	小麦粉	でんぷん	砂糖	転化糖	卵	食塩	重曹	タマネギエキス	水
配合A	34.9	9.5	6.3	6.3	2.5	0.3	0.2	17.0	23.0
配合B	34.9	9.5	6.3	6.3	2.5	0.3	0.2	25.0	15.0

表3 タマネギゼリーの配合

	タマネギエキス	イナアガー	砂糖	クエン酸:	コアントロー
配合比	78.1	7.2	10.4	0.4	3.9

注:イナアガーは伊那食品製ゼリー用寒天 コアントローはフランス製リキュールの1種

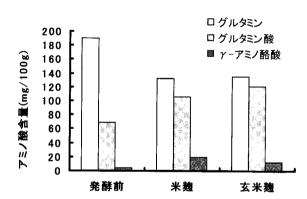


図1 麹処理による γ-アミノ酪酸(GABA)および関連アミノ酸含量の変化 (40°C、2日間)

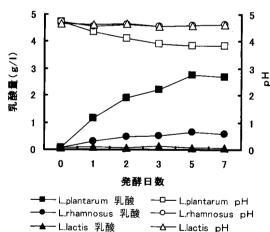


図2 乳酸発酵における乳酸量およびpHの変化(30℃)

4 要 約

タマネギエキスを食品用の粒状活性炭で処理することにより辛さを低減し風味を 改善できることが明らかとなった。エキスを利用した新規加工品としてタマネギチ ップス、タマネギゼリーを試作した。また、麹処理および乳酸発酵について検討し、 新規飲料を試作した。(受託研究:先端技術を活用した農林水産研究高度化事業)

2 技術普及・支援

2-1 食品加工相談室

食品製造企業等が行う新製品開発、新技術導入などの各種技術相談に応じる窓口として「食品加工相談室」を開設している。

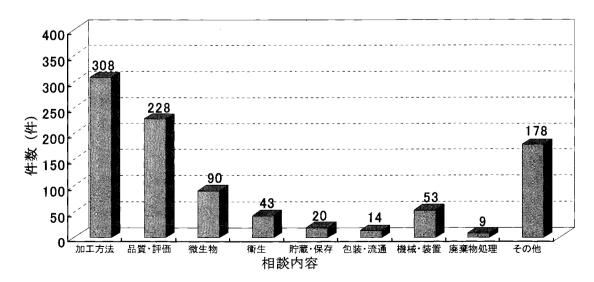
1 相談内容 食品加工に関すること

2 申込み 随 時

3 相談方法 来所(面接)、電話、文書、E-Mailいずれの方法でも可能

4 相談窓口 江別市文京台緑町589番地4 食品加工研究センター内

【平成17年度実績】


相談件数については、総数943件となっており、相談方法別にみると電話が最も多く、 食品製造企業等から気軽に相談が持ち込まれている。また、相談内容については、加工方 法、品質・評価、微生物、貯蔵・保存、機械・装置、衛生などの食品加工技術全般にわた る内容となっており、全道各地から相談が持ち込まれた。

1 相談件数 総数 943 件

2 月別相談状況

	区分	月	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3	合計
T _†	目談/	件数	101	95	97	115	63	59	83	90	52	85	58	45	943
	面	接	43	30	37	35	12	17	22	26	13	29	10	9	283
	電	話	50	60	55	72	50	35	54	58	34	54	44	35	601
	文	書	1	0	0	1	0	4	1	0	0	0	0	0	7
	E-M	lai1	7	5	5	7	1	3	6	6	5	2	4	1	52
	その	の他	0	0	0	0	0	0	0	0	0	0	0	0	0

3 相談内容

2-2 食品工業技術高度化対策支援事業 (現地技術支援)

食品製造企業等が行う新製品開発等を支援するため、各企業等からの依頼を受けて、研 究員を派遣し、食品加工技術についての助言や支援を行う。

1 支援地域 道内各地

2 対 象 道内食品製造企業、食品加工研究グループ等

3 申 込 み 随 時

4 支援依頼の方法 電話または文書

5 支援を行う者 センター研究職員

6 費 用 無 料

【平成17年度実績】

全道各地へ研究職員を派遣し、製品開発、製造技術、保存技術、品質管理等についての 助言や支援を行った。

1 支援件数 194件

2 支援日数 208日

3 支庁別指導状況

区分	指導件数	指導日数	区 分	指導件数	指導日数
石狩支庁	5 5	5 6	宗谷支庁	1	1
渡島支庁	1 1	1 4	網走支庁	0	0
檜山支庁	3	3	胆振支庁	2 1	2 3
後志支庁	1 4	1 5	日高支庁	6	6
空知支庁	1 9	19	十勝支庁	19	2 3
上川支庁	2 5	2 6	釧路支庁	7	9
留萌支庁	4	4	根室支庁	9	9
			合 計	194	208

2-3 技術支援事業(センター内技術支援事業)

食品製造企業等から依頼を受けて、センター内で企業等が抱える製品技術開発等に 関する技術的課題の解決に向けた助言や支援を行う。

- 1 支援対象 道内食品製造企業、食品加工研究グループ等
- 2 申 込 み 随 時
- 3 支援依頼の方法 「技術支援依頼書」により申込み
- 4 支援を行う者 センター研究職員
- 5 費 用 無 料

【平成17年度実績】

センター内に企業等を受け入れて、助言や支援を行った。

- 1 支援件数 2件
- 2 支援日数 5日

2-4 食品品質管理技術向上支援事業

食品製造における品質管理・衛生管理技術の向上を図るため、研究職員が希望する 企業等の工場に出向き、品質・微生物管理等の状況について把握等を行い、改善策を 提案する。

- 1 対 象 道内食品製造企業、食品加工研究グループ等
- 2 内 容 原材料・半製品・製品等の微生物診断、作業環境診断等
- 3 実 施 件 数 4件程度
- 4 申 込 み 随 時、電話・Eメール等で申込み
- 5 費 用 無 料

【平成17年度実績】

企業等の希望に応じ、品質・微生物管理等の状況について把握等を行い、改善策を 提案した。

実施件数 4件

2-5 移動食品加工研究センター

道内各地域で「移動食品加工研究センター」を開催し、講習会や個別技術相談、現地技術支援等を集中的に行う。

- 1 開催内容
- (1) 研究成果展示
- (2) 個別技術相談
- (3) 現地技術支援 他
- 2 開催時期等

開催時期、場所、内容等については、各支庁等と協議の上、決定する。

【平成17年度実績】

4支庁管内において、「移動食品加工研究センター」を開催し、研究成果の展示や 技術相談、技術支援などを行った。

開催支庁	開催地	開催年月日	参加者数	開催内容
上川支庁	旭川市	17. 7.21	65名	・研究成果展示 ・個別技術相談 ・現地技術支援
日高支庁	浦河町	17. 9. 5	28名	・研究成果展示 ・個別技術相談 ・現地技術支援
後志支庁	倶知安町	17. 11. 29	5 9名	・研究成果展示 ・個別技術相談 ・現地技術支援
十勝支庁	帯広市	18. 1.19	152名	・研究成果展示 ・個別技術相談 ・現地技術支援

2-6 技術講習会

食品加工に関する基礎的技術、応用技術、新しい製造技術及び食品の品質・衛生管理 等について、外部講師やセンター研究員による講習を行う。

- 1 技術講習会
 - ① 開催場所 食品加工研究センター
 - ② 対象者 食品製造企業及び市町村立等食品加工関連施設等の研究者、技術 者等
 - ③ 開催回数 年間2回(1回の講習期間は1~2日程度)
 - ④ 開催方式 座学及び実技講習
- 2 食品微生物管理技術講習会
- (1) 食品微生物管理技術講習会
 - ① 開催場所 食品加工研究センター2回、道央圏以外の圏域1回
 - ② 対象者 食品関連企業の研究者、技術者等
 - ③ 開催回数 年間3回(1回の講習期間は3日程度)
 - ④ 開催方式 座学及び実技講習
- (2) 食品品質管理講習会
 - ① 開催場所 食品加工研究センター
 - ② 対象者 食品関連企業の研究者、技術者等
 - ③ 開催回数 年間1回(講習期間は半日程度)
 - ④ 開催方式 座学

【平成17年度実績】

1 技術講習会

講習会の名称	開催場所	開催年月日	参加者数	講師名
官能評価技術講習会	当センター	17.11. 2	6 4	テイストテクノロ ジー(有) 代表取締役 平沼 孝太氏
魚醬油製造技術講習会	当センター	18. 2.28	6 2	吉川 修司

2 食品微生物管理技術講習会

講習会の名称	開催場所	開催年月日	参加者 数	講師名
食品微生物管理技術講習会(初級)	当センター	$^{17.}$ $^{7.12}$ 2 2 2 2 3 4	1 6	八十川、中川 能登、川上、濱岡
(初級)	当センター	$^{17.}$ $^{9.13}$ 3 $^{9.15}$	1 4	八十川、中川 能登、濱岡
(中級)	当センター	$17.11.15$ ~ 11.17	1 8	八十川、中川 能登、橋渡 川上、濱岡
食品品質管理講習会	当センター	18. 2.16	7 0	(独) 農林水 海 海 大様 大様 大様 大様 大 大 大 大 大 大 大 大 大 大 大 大

2-7 技術研修生の受入れ

食品製造企業等の技術者の資質向上を図るため、随時、研修生を受け入れる。

1 研修内容 食品加工に関する技術の修得

2 申し込み 随時

3 研修期間 原則として6ヶ月以内

4 費 用 無料(ただし、研修に要する原材料、消耗品等は企業負担)

【平成17年度実績】

12企業21名の研修生を当センターに受け入れ、各種食品加工技術の向上を図った。

	研 修 項 目	研修期間
1	微生物(細菌、カビ、酵母など)の取り扱いに関 する技術の習得	17. 4. 1~17. 8.22
2	微生物DNA抽出法、腸内細菌の分析技術、食品微 生物検査技術の習得	17. 4.25~17. 9. 7
3	食品の栄養成分分析技術の習得 (無機質、ビタミンA、ビタミンC)	17. 5. $9 \sim 17$. 5. 13 17. 5. $16 \sim 17$. 5. 20 17. 5. $30 \sim 17$. 6. 3
4	食品の栄養成分分析技術の習得	17. 6.13~17. 6.17 17. 6.20~17. 6.24
5	道産秋鮭とタコの基礎的加工技術及び品質管理技 術の習得	17. 6.20~17. 6.23
6	ビタミン類の食品分析技術の習得	17. 7. 1~18. 6.30
7	一般微生物検査技術の習得	17. 6. 6~17. 8.23
8	食品成分分析技術、微生物検査技術、カロテノイ ド色素退色防止法の習得	17. 6. 6~17. 6.30
9	製パン・製菓加工技術、ジャム加工技術(冷凍原料と生原料の相違)、加熱食肉製品(ハム、ソーセージ)の製造、食品衛生検査技術の取得	17. 9.13~18. 2.10
10	アルコール発酵技術、酢酸発酵技術、おり下げ技 術の習得	17. 10. 24~18. 9. 30
11	アミノ酸の分析・解析法、におい識別装置の分析 ・解析法、一般生菌数の分析・解析法の習得	17.11. 9~17.12.16
12	一般成分分析技術の習得	17. 10. 18~17. 10. 21
13	細胞の培養・保存方法、乳酸菌のCaco-2細胞への付着試験の習得	17.11.29~18. 3. 3
14	小麦粉に関する各種分析技術の習得	18. 1.25~18. 2.10
	合計	21名(12企業)

2-8 試験測定検査機器及び加工機械の開放

食品製造企業等の研究開発を支援するため、試験測定検査機器や加工機械を開放する。

1 主な開放機器

- (1) 試験、測定 クリープメーター、自動アミノ酸分析装置、ガスクロマトグラ 及び検査機器 フ質量分析計、核磁気共鳴装置、透過型電子顕微鏡、X線回折 装置、赤外分光分析計、高速液体クロマトグラフ、粒度分布測定装置、原子吸光 分光光度計 他
- (2) 加 工 機 械 低温除湿乾燥機、レトルト殺菌機、エクストルーダー、超高圧 処理装置、薄膜真空蒸発装置、膜分離装置、遠赤外線常圧・減 常圧乾燥機、マイクロ波減圧乾燥装置、噴霧乾燥機、真空凍結 乾燥機、試料粉砕機、超遠心粉砕機 他
- (3) オープンラボ 全自動食塩定量装置、蛋白質迅速定量装置、アルコールアナララトリー施設 イザー、水分活性測定装置 他
- (4) バイオテクノ クリーンベンチ、高圧滅菌機、顕微鏡及び画像解析装置 他ロジー開放試験室
- 2 利 用 金 額 2,370円以上~9,520円以下/時間 1時間を超えるときはその超える時間1時間につき 2,440円以下

【平成17年度実績】

設備使用実績は次のとおり。

試 験 測 定	加工機械	オープンラボ	ロジー開放試	計(申込件数)
検査機器		ラトリー施設	験室 	
4 5	6 4	2	3	114

2-9 依頼試験分析

食品製造企業等からの依頼により、試験分析を行う。

1 依 賴 試 験 一般生菌数、大腸菌群、耐熱性菌数、乳酸菌数、大腸菌、粘度 測定、水分活性測定、屈折率測定 等

2 依 頼 分 析 灰分分析、水分分析、たんぱく質分析、脂質分析、食塩分析、 アルコール分析、脂肪酸組成分析、アミノ酸組成分析、無機質 分析、X線微小部分析 等

3 手数料金額 試験 2,400円以上~42,000円以下/件 分析 2,400円以上~55,900円以下/件

【平成17年度実績】

次のとおり試験分析を行った。

試 験	分 析	計 (試験分析件数)
4 5	1 5	6 0

2-10 その他

(1) 技術審査

関係団体等からの依頼を受けて、製品の品質や新開発技術の内容について、審査を行った。

refer	rts.	/+-	# #	<u>-₩</u> -		部	別	審	查	件	数	
内	容	依	頼	者	食	品	応	用	食品	品バ		計
		L			開多	答部	技術		イフ	か部		
平成17年度 小企業育成 に係る技術	事業助成			道中小企 アンター						2		2
平成17年度 新技術・新 賞」に係る	製品開発	北海道経済部			2		3		1		6	
合			計			2		3		3		8

(2) 講習会などへの講師派遣

市町村、団体等からの依頼を受けて、センター研究職員を講師として派遣した。

		T		<u> </u>	,
	講習会等の名称	派遣日	派遣地	依 頼 者	派遣者
1	地ビール研究会事前品質評 価	17. 4.21	札幌市	札幌国税局	田村吉史 橋渡 携 吉川修司
2	道産食品独自認証制度日本酒に係る官能検査	17. 4.22	札幌市	財団法人日本穀物検定協会	田村吉史 柿本雅史 吉川修司
3	空育酒170号試験醸造酒の 第1回官能評価	17. 4.22	札幌市	札幌国税局	富永一哉 濱岡直裕
4	道産食品独自認証制度ベーコン類及びソーセージ類に 係る官能検査	17. 4.26	札幌市	財団法人日本穀物検定協会	井上貞仁 川上 誠 渡辺寿美
5	食品開発とバイオテクノロジー:遺伝子手法を用いた 腸内細菌群衆解析の応用	17. 5. 18	札幌市	財団法人 北海道食品分析セ ンター	長島浩二
6	衛生管理講習会	17. 5. 18	札幌市	株式会社 一久	富永一哉
7	道産食品独自認証制度(ナチュラルチーズ)に係る官 能検査	17. 6. 1	札幌市	(社)北海道酪農検 定検査協会	川上 誠
8	粉体プロセス合同シンポジ ウム「地域に貢献する粉体 プロセス技術と工学」	17. 6. 7	札幌市	社団法人 化学工 学会 粉体プロセ ス分科会	山木一史
9	平成17年度優れた加工食品 づくり事業 (道産加工食品 販路拡大推進事業) に係る 全体アドバイス	17. 6.16	札幌市	産業支援課食品産 業振興グループ	佐々木茂文
10	美苫「みのり」会設立総会	17. 6.23	苫小牧市	北海道中小企業家 同好会苫小牧支部	富永一哉
11	韓日共同海洋バイオ技術セミナー	17. 6.28	大韓民国 江陵市	(財) 江陵海洋生 物産業振興院	長島浩二 錦織孝史 阿部 茂
12	地場産品の加工製造講習会	17. 6.29	浜中町	浜中町産業振興推 進協議会	富永一哉
13	ナチュラルチーズ製造技術 講演会	17. 7. 1	帯広市 	十勝ナチュラルチーズリーグ	川上 誠
14	食品加工技術講習会	17. 7. 4	函館市	函館市長	阿部 茂
15	技術交流会	17. 7. 6	東京都	三菱化学フーズ株式会社	阿部 茂
16	平成17年度(33回)全国醬油品評会	17. 7.14	東京都	日本醤油協会	田村吉史
17	アロニアの特性と成分効果講習会	17. 7. 16	札幌市	株式会社ネクス	田中常雄
18	道産食品独自認証制度ベーコン類及びソーセージ類に 係る官能検査	17. 8. 18	札幌市	財団法人 日本穀物検定協会	井上貞仁 川上 誠 渡辺寿美
19	しそ飲料とみその加工技術 と衛生管理	17. 8.22	江別市	石狩北部地区農業 改良普及センター	吉川修司 能登裕子

	講習会等の名称	派遣日	派遣地	依 頼 者	派遣者
20	「企業ニーズ集約・対応機 能強化の取組」第1回説明 会	17. 8.26	江別市	北海道経済産業局	富永一哉
21	「夏期酒造講習会」 及び 「清酒貯蔵・出荷管理講習 会」	17. 8. 29 ~30	札幌市	北海道酒造組合	田村吉史吉川修司
22	空育酒170号(彗星)試験 醸造酒の第2回官能評価	17. 8.31	札幌市	札幌国税局	田村吉史 吉川修司
23	平成17年度「だて市民カレッジ」	17. 9. 7	伊達市	伊達市教育委員会	田中常雄
24	日高管内商工会青年部の若 手後継者等育成事業「広域 振興事業」に係る視察研修 会	17. 9.14	江別市	北海道日高管内商 工会連合会	田中常雄 錦織孝史 太田智樹
25	第13回北海道加工食品フェ ア選考会	17. 9.15	札幌市	北海道加工食品フェア実行委員会	本堂正明
26	カバノアナタケ勉強会	17. 9.15	札幌市	NPO法人 しらかばの会	渡邉 治
27	道産食品独自認証制度日本 酒に係る官能検査(食味試験)	17. 9.20	札幌市	財団法人 日本穀物検定協会	田村吉史 柿本雅史 吉川修司
28	第25回北海道味噌品評会	17.10. 5	江別市	北海道味噌醬油工 業協同組合	本堂正明 田村吉史 吉川修司
29	第29回冷凍食品技術研究会	17. 10. 7	江別市	財団法人 北海道 冷凍食品協会	槇 賢治
30	第4回COE国際シンポジウム	17. 10. 10	函館市	北海道大学大学院	長島浩二
31	期限付免許者製造酒類の品 質審査	17. 10. 24	札幌市	札幌国税局	田村吉史 吉川修司
32	北海道科学技術ネットワークセッション '05	17. 10. 25	札幌市	北大リサーチ&ビ ジネスパーク構想 推進協議会	中川良二
33	平成17年度全国市販酒類調 査の品評会	17. 10. 28 17. 11. 10 17. 11. 11	札幌市札幌市	札幌国税局 札幌国税局 札幌国税局	模 賢治 吉川修司 模 賢治 吉川修司 田村吉史
					橋渡携
34	新チーズ講演会と試食の夕べ	17. 10. 29	札幌市	株式会社まほろば	長島浩二
35	濁酒製造に関する研修会	17. 10. 31	長沼町	長沼町長	田村吉史 吉川修司

	講習会等の名称	派遣日	派遣地	依頼者	派遣者
36	産学官連携シンポジウム	17.11. 1	札幌市	寒冷地域産学官連 携推進実行委員会	田中常雄
37	HoPE 11月例会	17.11. 8	札幌市	北海道中小企業家 同友会 産学官連 携研究会 HoPE	熊林義晃 井上貞仁
38	平成17年度高度品質管理向 上推進事業・技術講習会 (第回「アード・アャース・北瀬」ンズジウム)	17. 11. 19	札幌市	(独)農林水産消費 技術センター小樽 センター	富永一哉
39	「食中毒と衛生管理」セミ	17. 11. 21	札幌市	スリーエム ヘル スケア株式会社	長島浩二
40	第43回洋酒・果実酒鑑評会	17. 11. 21 ~22	東広島市	独立行政法人 酒類総合研究所	富永一哉
41	「技術交流会(技術勉強 会)」	17. 11. 24 ~25	愛媛県	エスアイ精工 (株)	阿部 茂
42	製造免許申請前の濁酒 製 造に関する研修会	17. 12. 19	長沼町	長沼町	濱岡直裕
43	バイオ産業振興専門委員会	18. 1.31	札幌市	北海道経済連合会	錦織孝史
44	食肉の品質管理技術	18. 2. 6	札幌市	札幌市保健福祉局	井上貞仁
45	濁酒製造技術研修会	18. 1.31 ~2.6	江別市	長沼町	田村吉史 吉川修司 濱岡直裕
46	道央バイオ研究交流会	18. 2.23	恵庭市	(財)道央産業技術 振興機構	八十川大輔
47	タンパク質系バイオマス利 活用セミナー	18. 2.28	札幌市	(財)北海道科学技 術総合振興センタ	錦織孝史
48	平成17酒造年度新酒鑑評会 の品質評価員	18. 3. 22 18. 3. 23	札幌市	札幌国税局	田村吉史 吉川修司 富永一哉 濱岡直裕
49	道産食品独自認証制度そば に係る官能検査	18. 3, 28	札幌市	財団法人 日本穀物検定協会	山木一史 田中常雄 渡辺寿美
50	道産食品独自認証制度アイ スクリームに係る官能検査	18. 3.29	札幌市	財団法人 日本穀物検定協会	川上 誠 佐藤理奈 渡辺寿美
	計		•	50 件	87名

(3) 視察実績

平成17年度の視察者は、33団体、472人でセンター業務内容の説明、各施設の 案内、懇談、意見交換等により普及指導に努めた。

○ 月別視察状況

月区分	4 月	5 月	6月	7 月	8月	9 月	10 月
視察件数	0	2	1	4	7	3	5
視察人数	0	1 8	2 5	5 4	106	110	4 4

月区分	11 月	12 月	1 月	2 月	3 月	≅ †
視察件数	∞	1	2	1	4	3 3
視察人数	6 6	2	4	8	3 5	472

(4) 健康食品参入支援・ネットワーク形成事業

今後大きな成長が期待できる健康食品分野への道内企業の参入を加速させるとともに、 企業や研究者のネットワーク形成を図るため、機能性評価や製造技術、商品開発に係る 総合的な技術指導や技術情報の提供等を行った。

(1) ネットワーク形成事業・情報提供事業

健康食品分野における法制度の仕組みや関係機関等の研究内容等の技術情報、機能性評価を行う機関の情報、製造企業の情報等を収集し、健康食品データベースの整備を図り、ホームページ等を整備して情報提供を行った。

(2) 新商品·技術評価事業

成分分析や試験管ベースの機能性評価、および技術情報の提供を行い、新たに健康食品分野への参入を希望する企業の研究開発に技術支援を行った。

(5) インキュベーションスペース貸与

企業等の希望により、センター内にインキュベーションスペースを提供するとともに、 センターの設備等を活用することで、長期間(原則1年)に渡り研究職員の技術支援を 受けながら共同研究や新製品開発等の検討を行った。

○ 平成17年度利用企業 : 3企業

3 技術情報の提供

3-1 研究成果発表会の開催

平成17年4月27日に札幌市において開催し、口頭発表7テーマ、ポスター発表9テーマ、パネル展示、技術相談等を行い研究成果の普及に努めた。 (参加者238名)

3-2 展示会・紹介展

センターの試験研究と技術開発成果を展示会等に出店し、技術の普及振興及び交流を 図った。

展示会等の名称	主 催 者	開催地	開催年月日
2005キッズ・サイエンス・パーク	北海道	札幌市	17. 8. 4
2005えべつ消費者まつり	江別市	江別市	17. 10. 8
ビジネスEXPO「第19回北 海道技術・ビジネス交流会」	北海道技術・ビジネス交 流会実行委員会	札幌市	17. 11. 9 ~10
産学官連携シンポジウム 「地域資源を活かした産学官連 携」	産学官連携推進事業実行 委員会	旭川市	17. 11. 14
第4回北海道食品産業総合展	(社) 北海道食品産業協 議会	札幌市	17. 11. 18 ~19
コラボレーションフォーラム 2005	北海道経済産業局	札幌市	17. 11. 22

3-3 刊行物一覧

1 技術情報誌「食加研だより」の発行

センターの業務案内、研究報告を中心とした技術情報を主な内容として、2回 発行し、関係機関・団体などに提供した。

2 平成16年度事業報告・平成17年度事業計画の発行 当該報告・計画書を発行し、関係企業、関係団体等に提供し、当センターの研究 成果の普及を図った。

3-4 食品加工技術情報データベースの公開

食品加工に携わる企業の技術力向上を支援するため、当センターの研究成果のほか、 道内外の国公立試験研究機関における食品加工技術情報をデータベース化し、公開を 行った。

<利用方法>

当センターのホームページにて公開 URL http://www.foodhokkaido.gr.jp

3-5 図書・資料室の開放

国内外の食品工業関係専門誌、大学・国公設試験研究機関から提供を受けた図書、報告書類を一般に開放した。

<図書・資料室利用時間>

月曜日~金曜日 9:00~17:00 (ただし、祝祭日、年末年始は休館)

4 特許権・学会発表等

4-1 出願済「特許」

生分解性を有する成形品用原料の製法と生分解性を有 6.2.7 10.130 特許第2741476号			TWATE THE
生分解性を有する成形品用原料の製法と生分解性を有 6.2.7 10.1.30 特額平6-37669 特許第2741476号	発明の名称	出願年月日	登録年月日
する成形品の製法 特願平6-37669 特許第2741476号 キクイモ由来レクチン及びその分離製法 6.10.19 9.6.13 特額平6-281416 特許第2660175号 7.6.26 特額平7-182172 特許第27611833号 11.6.4 特許第2935101号 12.5.16 特額平7-182172 特許第2935101号 13.6.18 特額平9-184505 特許第380956号 14.5.14 14.15 特額平1-191261 特許第3076908号 14.5.14 17.4.15 特額平1-217758 13.1.16 特額平1-217758 14.6.18 特額平1-217758 14.5.14 17.4.15 特額201-45778 特許第307919号 14.5.14 17.4.15 特額2001-45778 特許第3665901号 14.5.14 17.4.15 特額2001-45778 特許第3665901号 14.5.14 17.4.15 特額2001-45778 特許第3665901号 14.5.18 14.5.14 17.4.15 特額2001-45778 特許第3665901号 14.5.18 14.5.14 17.4.15 特額2001-45778 特許第3665901号 14.6.18 (集を由)			特許番号
### ### ### ### ### ### ### ##########		6. 2. 7	10. 1.30
# 特願平6-281416 特許第2660175号 神	する成形品の製法	特願平6-37669	特許第2741476号
 海洋生物を原料とした代用皮膚 現 6.26 特 7.6.26 特 7.6.2172 特 7.6.21 特 8.4.25 11.6.4 特 8.4.25 11.6.4 特 8.4.25 11.6.4 特 8.4.25 11.6.4 特 8.4.25 10.12.18 特 8.4.25 10.12.18 特 8.4.25 特 9.4.4 特 9.4.10 13.6.18 特 9.1.10 13.6.18 特 9.1.10 13.6.18 特 9.1.20 特 9.2.20 特 9.2.2	キクイモ由来レクチン及びその分離製法	6.10.19	9. 6.13
発願平7-182172 特許第2731833号 乳酸菌乾燥粉末の製造方法 8. 4.25 特別 4. 4 特計第2935101号 魚類ゼラチンの製造方法 9. 4. 4 特別 4. 10.12.18 特別 4. 4 10.12 特別 4. 4 10.18 (業 4 5 10.12 は 4 10		特願平6-281416	特許第2660175号
 乳酸菌乾燥粉末の製造方法 塩類ゼラチンの製造方法 ウ、4、4 特願平9-102529 特許第2935101号 黄色ブドウ球菌の検出培地 ウ、6、26 特育平9-184505 特許第3380956号 豆乳入りアイスクリームの製造方法 ウ、11.10 特育中-342332 特許第3196073号 冷凍食品の離水防止剤 ウ、12.15 特育中-342332 特許第3196073号 冷凍食品の離水防止剤 り、1.0 おり、3.0 11.5.28 特育中10-102067 特許第2933309号 加・3.0 11.5.28 特育中10-239584 カドミウムを除去した魚介類エキスの製造法 10.8.11 特育・第2933309号 加・3.11 特育・第2931814号 エンドグルカナーゼをコードする遺伝子 10.9.30 特定・第2931814号 エンドグルカナーゼをコードする遺伝子 10.9.30 特第第3089245号 カルシウム吸収を促進する多糖類食品素材およびその製造方法 前のより、1.2.2 特際平10-353968 特許第3089245号 おり、2.2 特解平11-54779 特解平11-54779 特許第3076908号 オリ、7.2 特部第3076908号 オリ、7.2 特部第3172917号 ホタテガイ系統解析方法 12.5.16 特願平11-208647 特許第3172917号 ホタテガイ系統解析方法 2.5.16 特願平12-148570 特許第3543175号 醤油滓を利用した水産食品 14.5.14 特際第001-45778 特許第3665901号 包装食品の加熱方法 14.6.18 (薬毒中) 	海洋生物を原料とした代用皮膚	7. 6.26	9.12.26
特願平8-130887 特許第2935101号 魚類ゼラチンの製造方法 9. 4. 4 特		特願平7-182172	特許第2731833号
無類ゼラチンの製造方法 9, 4, 4 特額平9-102529 特許第2864459号	乳酸菌乾燥粉末の製造方法	8. 4.25	11. 6. 4
特額平9-102529 特許第2864459号 黄色ブドウ球菌の検出培地 9.6.26 14.12.20 特額平9-184505 特許第3380956号		特願平8-130887	特許第2935101号
黄色ブドウ球菌の検出培地	魚類ゼラチンの製造方法	9. 4. 4	10.12.18
特願平9-184505 特許第3380956号 豆乳入りアイスクリームの製造方法 9.11.10 13. 6.18 特所平9-342332 特許第3196073号 冷凍食品の離水防止剤 9.12. 5 打.10. 1 特所第2985953号 力ドミウムを除去した魚介類エキスの製造法 10. 3.30 打. 5.28 特許第2933309号 10. 8.11 打. 5.21 特願平10-102067 特許第2933309号 10. 8.11 打. 5.21 特願平10-239584 特許第2931814号 エンドグルカナーゼをコードする遺伝子 10. 9.30 12. 7.21 特願平10-377864 特許第3089245号 力ルシウム吸収を促進する多糖類食品素材およびその 関造方法 打. 3. 2 特許第3089245号 計. 3. 2 特許第3425664号 計. 3. 2 特所第11-54779 特許第3079096号 計. 7. 6 特許第3079096号 計. 7. 6 特許第3079096号 計. 7. 6 特所平11-191261 特許第3079096号 計. 7. 23 13. 3.30 特願平11-208647 特許第3172917号 本タテガイ系統解析方法 12. 5.16 特際平12-148570 第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十		特願平9-102529	特許第2864459号
豆乳入りアイスクリームの製造方法 9.11.10 特願平9-342332 特許第3196073号 冷凍食品の離水防止剤 9.12.5 特許第2985953号 カドミウムを除去した魚介類エキスの製造法 10.3.30 特許第2985953号 クトドラウムを除去した魚介類エキスの製造法 10.8.11 11.5.21 特願平10-239584 特許第2933309号 12.7.21 特願平10-377864 特許第2931814号 コルシウム吸収を促進する多糖類食品素材およびその製造方法 10.11.26 特許第3089245号 カルシウム吸収を促進する多糖類食品素材およびその製造方法 11.3.2 特願平10-353968 特許第3425664号 計2.6.16 特願平11-54779 特許第3079096号 甘味飲料 11.7.6 行験 11.7.6 特許第3079096号 11.7.6 特別平11-191261 特許第3076908号 相菌検出方法 11.3.2 特願平11-191261 特許第3076908号 オタテガイ系統解析方法 12.5.16 特願平11-208647 特許第3172917号 本タテガイ系統解析方法 12.5.16 特願平12-148570 特許第3172917号 13.1.16 特別2001-45778 特許第3543175号 替加達を利用した水産食品 14.5.14 特願2002-177758 特許第3665901号 包装食品の加熱方法 14.6.18 (審查中)	黄色ブドウ球菌の検出培地	9. 6.26	14.12.20
特願平9-342332 特許第3196073号 冷凍食品の離水防止剤 9.12. 5 11.10. 1 特願平9-352356 特許第2985953号 カドミウムを除去した魚介類エキスの製造法 10. 3.30 11. 5.28 特願平10-102067 特許第2933309号 魚類コラーゲンの製造方法 10. 8.11 11. 5.21 特願平10-239584 特許第2931814号 エンドグルカナーゼをコードする遺伝子 10. 9.30 12. 7.21 特願平10-377864 特許第3089245号 カルシウム吸収を促進する多糖類食品素材およびその 10.11.26 15. 5. 9 特麗平10-353968 特許第3425664号 耐塩性酵母の乾燥菌体スターター及びその製造方法 11. 3. 2 12. 6.16 特願平11-54779 特許第3079096号 甘味飲料 11. 7. 6 12. 6.16 特許第3079096号 加菌検出方法 11. 7. 23 13. 3.30 特許第3172917号 ホタテガイ系統解析方法 12. 5.16 特願平12-148570 (審査中) α ーグルコシダーゼ阻害物質 13. 1.16 特別2001-45778 特許第3543175号 醤油滓を利用した水産食品 14. 5.14 特別2002-177758 特許第3665901号 包装食品の加熱方法 14. 6.18 (審本中)		特願平9-184505	特許第3380956号
冷凍食品の離水防止剤 9.12. 5 11.10. 1 カドミウムを除去した魚介類エキスの製造法 10. 3.30 11. 5.28 特願平10-102067 特許第2933309号 魚類コラーゲンの製造方法 10. 8.11 11. 5.21 牛腕平10-239584 特許第2931814号 エンドグルカナーゼをコードする遺伝子 10. 9.30 12. 7.21 特願平10-377864 特許第3089245号 カルシウム吸収を促進する多糖類食品素材およびその 製造方法 10.11.26 15. 5. 9 耐塩性酵母の乾燥菌体スターター及びその製造方法 11. 3. 2 12. 6.16 特願平11-54779 特許第3079096号 甘味飲料 11. 7. 6 12. 6.16 特願平11-191261 特許第3076908号 細菌検出方法 11. 7.23 13. 3.30 特原平11-208647 特計第3172917号 ホタテガイ系統解析方法 12. 5.16 特願平12-148570 αーグルコシダーゼ阻害物質 13. 1.16 16. 4.16 特願2001-45778 特許第3543175号 醤油滓を利用した水産食品 14. 5.14 17. 4.15 特願2002-177758 特許第3665901号 包装食品の加熱方法 14. 6.18 (審本中)	豆乳入りアイスクリームの製造方法	9.11.10	13. 6.18
特願平9-352356 特許第2985953号 カドミウムを除去した魚介類エキスの製造法 10. 3.30 特願平10-102067 特許第2933309号 魚類コラーゲンの製造方法 10. 8.11 11. 5.21 特願平10-239584 特許第2931814号 エンドグルカナーゼをコードする遺伝子 10. 9.30 12. 7.21 特際平10-377864 特許第3089245号 カルシウム吸収を促進する多糖類食品素材およびその 特願平10-353968 特許第3425664号 耐塩性酵母の乾燥菌体スターター及びその製造方法 11. 3. 2 12. 6.16 特願平11-54779 特許第3079096号 甘味飲料 11. 7. 6 12. 6.16 特願平11-191261 特許第3076908号 細菌検出方法 11. 7.23 13. 3.30 特願平11-208647 特許第3172917号 ホタテガイ系統解析方法 12. 5.16 特願平12-148570 (審査中) αーグルコシダーゼ阻害物質 13. 1.16 16. 4.16 特願2001-45778 特許第3543175号 醤油滓を利用した水産食品 14. 5.14 17. 4.15 特許第3665901号 包装食品の加熱方法 14. 6.18 (寒杏中)		特願平9-342332	特許第3196073号
カドミウムを除去した魚介類エキスの製造法 10.3.30 特願平10-102067 特許第2933309号 魚類コラーゲンの製造方法 10.8.11 特願平10-239584 特許第2931814号 10.9.30 特際平10-377864 特許第2931814号 10.9.30 特願平10-377864 特許第3089245号 カルシウム吸収を促進する多糖類食品素材およびその 製造方法 10.11.26 特許第3089245号 10.11.26 特許第3089245号 11.3.2 12.6.16 特許第3079096号 11.7.6 12.6.16 特所平11-54779 特許第3079096号 11.7.6 12.6.16 特所平11-191261 特許第3076908号 11.7.23 13.3.30 特所平11-208647 特許第3172917号 ホタテガイ系統解析方法 12.5.16 特所平12-148570 (審査中)	冷凍食品の離水防止剤	9.12. 5	11.10. 1
特願平10-102067 特許第2933309号 魚類コラーゲンの製造方法 10.8.11 特願平10-239584 特許第2931814号 エンドグルカナーゼをコードする遺伝子 10.9.30 12.7.21 特際平10-377864 特許第3089245号 カルシウム吸収を促進する多糖類食品素材およびその 製造方法 特育第3425664号 特願平10-353968 特許第3425664号 耐塩性酵母の乾燥菌体スターター及びその製造方法 11.3.2 12.6.16 特際平11-54779 特許第3079096号 甘味飲料 11.7.6 12.6.16 特際平11-191261 特許第3076908号 加菌検出方法 11.7.23 13.3.30 特願平11-208647 特許第3172917号 ホタテガイ系統解析方法 12.5.16 特願平12-148570 (審査中)		特願平9-352356	特許第2985953号
無類コラーゲンの製造方法 10.8.11 特願平10-239584 特許第2931814号 エンドグルカナーゼをコードする遺伝子 10.9.30 12.7.21 特願平10-377864 特許第3089245号 カルシウム吸収を促進する多糖類食品素材およびその 10.11.26 15.5.9 特願平10-353968 特許第3425664号 耐塩性酵母の乾燥菌体スターター及びその製造方法 11.3.2 12.6.16 特願平11-54779 特許第3079096号 11.7.6 12.6.16 特所平11-191261 特許第3076908号 細菌検出方法 11.7.23 13.3.30 特願平11-208647 特許第3172917号 ホタテガイ系統解析方法 12.5.16 特願平12-148570 (審査中) αーグルコシダーゼ阻害物質 13.1.16 16.4.16 特別2001-45778 特許第3543175号 醤油滓を利用した水産食品 14.5.14 特別2002-177758 特許第3665901号 包装食品の加熱方法 14.6.18 (審査中)	カドミウムを除去した魚介類エキスの製造法	10. 3.30	11. 5.28
特願平10-239584 特許第2931814号 エンドグルカナーゼをコードする遺伝子 10.9.30 特願平10-377864 特許第3089245号 カルシウム吸収を促進する多糖類食品素材およびその 10.11.26 特願平10-353968 特許第3425664号 耐塩性酵母の乾燥菌体スターター及びその製造方法 11.3.2 12.6.16 特願平11-54779 特許第3079096号 甘味飲料 11.7.6 特願平11-191261 特許第3076908号 細菌検出方法 11.7.23 13.3.30 特願平11-208647 特許第3172917号 ホタテガイ系統解析方法 12.5.16 特願平12-148570 (審査中) αーグルコシダーゼ阻害物質 13.1.16 16.4.16 特願2001-45778 特許第3543175号 醤油滓を利用した水産食品 14.5.14 特願2002-177758 特許第3665901号 包装食品の加熱方法 (楽杏中)		特願平10-102067	特許第2933309号
エンドグルカナーゼをコードする遺伝子 10.9.30 特願平10-377864 特許第3089245号 カルシウム吸収を促進する多糖類食品素材およびその 10.11.26 15.5.9 特願平10-353968 特許第3425664号 耐塩性酵母の乾燥菌体スターター及びその製造方法 11.3.2 12.6.16 特願平11-54779 特許第3079096号 甘味飲料 11.7.6 12.6.16 特際平11-191261 特許第3076908号 11.7.23 13.3.30 特願平11-208647 特許第3172917号 ホタテガイ系統解析方法 12.5.16 特願平12-148570 (審査中) ローグルコシダーゼ阻害物質 13.1.16 特願2001-45778 特許第3543175号 醤油滓を利用した水産食品 14.5.14 特願2002-177758 特許第3665901号 包装食品の加熱方法 14.6.18 (審查中)	魚類コラーゲンの製造方法	10. 8.11	11. 5.21
特願平10-377864 特許第3089245号 カルシウム吸収を促進する多糖類食品素材およびその 製造方法 特願平10-353968 特許第3425664号 耐塩性酵母の乾燥菌体スターター及びその製造方法 11. 3. 2 12. 6.16 特願平11-54779 特許第3079096号 甘味飲料 11. 7. 6 12. 6.16 特所平11-191261 特許第3076908号 細菌検出方法 11. 7.23 13. 3.30 特願平11-208647 特許第3172917号 ホタテガイ系統解析方法 12. 5.16 特願平12-148570 (審査中) α - グルコシダーゼ阻害物質 13. 1.16 特別2001-45778 特許第3543175号 醤油滓を利用した水産食品 14. 5.14 特願2002-177758 特許第3665901号 包装食品の加熱方法 14. 6.18 (審查中)		特願平10-239584	特許第2931814号
カルシウム吸収を促進する多糖類食品素材およびその 製造方法 耐塩性酵母の乾燥菌体スターター及びその製造方法 甘味飲料 11. 7. 6 特願平11-54779 制菌検出方法 11. 7. 23 特願平11-208647 特許第3076908号 細菌検出方法 11. 7.23 特願平11-208647 特許第3172917号 ホタテガイ系統解析方法 12. 5.16 特願平12-148570 α - グルコシダーゼ阻害物質 13. 1.16 特願2001-45778 醤油滓を利用した水産食品 14. 5.14 特願2002-177758 特許第3665901号 包装食品の加熱方法	エンドグルカナーゼをコードする遺伝子	10. 9.30	12. 7.21
製造方法特願平10-353968特許第3425664号耐塩性酵母の乾燥菌体スターター及びその製造方法11. 3. 2 特願平11-5477912. 6.16 特許第3079096号甘味飲料11. 7. 6 特願平11-19126112. 6.16 特許第3076908号細菌検出方法11. 7.23 特願平11-20864713. 3.30 特許第3172917号ホタテガイ系統解析方法12. 5.16 特願平12-148570(審査中)αーグルコシダーゼ阻害物質13. 1.16 特願2001-4577816. 4.16 特許第3543175号醤油滓を利用した水産食品14. 5.14 特願2002-17775817. 4.15 特許第3665901号包装食品の加熱方法14. 6.18(審查中)		特願平10-377864	特許第3089245号
耐塩性酵母の乾燥菌体スターター及びその製造方法	カルシウム吸収を促進する多糖類食品素材およびその	10.11.26	15. 5. 9
甘味飲料特願平11-54779特許第3079096号甘味飲料11. 7. 6 特願平11-19126112. 6.16 特許第3076908号細菌検出方法11. 7.23 特願平11-20864713. 3.30 特許第3172917号ホタテガイ系統解析方法12. 5.16 特願平12-148570(審査中)αーグルコシダーゼ阻害物質13. 1.16 特願2001-4577816. 4.16 特許第3543175号醤油滓を利用した水産食品14. 5.14 特願2002-17775817. 4.15 特許第3665901号包装食品の加熱方法14. 6.18(審査中)	製造方法	特願平10-353968	特許第3425664号
甘味飲料11. 7. 6 特願平11-19126112. 6.16 特許第3076908号細菌検出方法11. 7.23 特願平11-20864713. 3.30 特許第3172917号ホタテガイ系統解析方法12. 5.16 特願平12-148570(審査中)αーグルコシダーゼ阻害物質13. 1.16 特願2001-4577816. 4.16 特許第3543175号醤油滓を利用した水産食品14. 5.14 特願2002-17775817. 4.15 特許第3665901号包装食品の加熱方法14. 6.18(審查中)	耐塩性酵母の乾燥菌体スターター及びその製造方法	11. 3. 2	12. 6.16
特願平11-191261 特許第3076908号 細菌検出方法 11. 7.23 13. 3.30 特願平11-208647 特許第3172917号 ホタテガイ系統解析方法 12. 5.16 特願平12-148570 (審査中) αーグルコシダーゼ阻害物質 13. 1.16 特願2001-45778 特許第3543175号 醤油滓を利用した水産食品 14. 5.14 17. 4.15 特願2002-177758 特許第3665901号 包装食品の加熱方法 14. 6.18 (案査中)		特願平11-54779	特許第3079096号
細菌検出方法11. 7.23 特願平11-20864713. 3.30 特許第3172917号ホタテガイ系統解析方法12. 5.16 特願平12-148570(審査中)αーグルコシダーゼ阻害物質13. 1.1616. 4.16特願2001-45778特許第3543175号醤油滓を利用した水産食品14. 5.14 特願2002-17775817. 4.15包装食品の加熱方法14. 6.18(審査中)	甘味飲料	11. 7. 6	12. 6.16
特願平11-208647 特許第3172917号 ホタテガイ系統解析方法 12. 5.16 特願平12-148570 (審査中) α - グルコシダーゼ阻害物質 13. 1.16 特願2001-45778 特許第3543175号 醤油滓を利用した水産食品 14. 5.14 17. 4.15 特願2002-177758 特許第3665901号 包装食品の加熱方法 14. 6.18 (審査中)		特願平11-191261	特許第3076908号
ホタテガイ系統解析方法12. 5.16 特願平12-148570(審査中)αーグルコシダーゼ阻害物質13. 1.1616. 4.16特願2001-45778特許第3543175号醤油滓を利用した水産食品14. 5.1417. 4.15特願2002-177758特許第3665901号包装食品の加熱方法14. 6.18(審査中)	細菌検出方法	11. 7.23	13. 3.30
特願平12-148570 (審査中)		特願平11-208647	特許第3172917号
マーグルコシダーゼ阻害物質 13. 1.16 16. 4.16 特願2001-45778 特許第3543175号 醤油滓を利用した水産食品 14. 5.14 17. 4.15 特願2002-177758 特許第3665901号 包装食品の加熱方法 14. 6.18 (案を中)	ホタテガイ系統解析方法	12. 5.16	(安木中)
特願2001-45778特許第3543175号醤油滓を利用した水産食品14. 5.1417. 4.15特願2002-177758特許第3665901号包装食品の加熱方法14. 6.18(審査中)		特願平12-148570	(番盆甲)
醤油滓を利用した水産食品14.5.1417.4.15特願2002-177758特許第3665901号包装食品の加熱方法14.6.18	αーグルコシダーゼ阻害物質	13. 1.16	16. 4.16
特願2002-177758特許第3665901号包装食品の加熱方法14. 6.18(審査中)		特願2001-45778	特許第3543175号
包装食品の加熱方法 14.6.18 (案本中)	醤油滓を利用した水産食品	14. 5.14	17. 4.15
(塞杏中)		特願2002-177758	特許第3665901号
特願2002-214539 (審査中) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	包装食品の加熱方法	14. 6.18	(培 木 十)
		特願2002-214539	(番盆甲)

発明の名称	出願年月日	登録年月日
光 切 切 右 柳	出願番号	特許番号
ポテトペーストの製法	14. 6.21	16.11.19
	特願2002-217301	特許第3616926号
細菌由来凝乳酵素および当該酵素を用いたチーズの	14. 7. 2	
製造	特願2002-194016	(番旦十)
食酢及びその製造方法	15. 2.21	17. 3.18
	特願2003-043880	特許第3656218号
魚介類を素材とした発酵調味料	15. 4.10	 (審査中)
	特願2003-141145	(H'L')
アロニア酢及びその製造方法	15. 3.10	17. 7.22
	特願 2003-62767	特許第3699985号
海洋深層水を利用した乳製品製造	15.10. 3	****
	特願 2003-380521	
食品の乾燥方法	15.10.20	(審査中)
	特願2003-394726	(H L 1)
新規な乳酸菌とそれを用いて得られている発酵豆乳	16. 2.10	 (審査中)
およびその製造方法	特願2004-68091	(AE EL 1 /
米粉の製造方法	16. 3.31	
	特願2004-105338	
乾燥豆類の吸水量改善方法	16.10.18	_
	特願2004-332421	
魚介類を原料としたタンパク質含有スナック菓子の	16.10.18	
製造方法	特願2004-332422	

4-2 学会誌等への発表

表 題	投稿者	投稿誌名
	(K. Ohgami)	
	(I. Iloeva)	
	(K. Shiratori)	
	(Y. Koyama)	
A	(Xue-Hai Jin)	
Anti-inflammatory Effects of Aronia Extract on	(K. Yoshida)	Investigative Ophthalmology & Visual
Rat Endotoxin-Induced Uveitis	(S. Kase)	Science, 46(1), 275-281(2005)
	(N. Kitaichi)	
	(Y. Suzuki)	
	T. Tanaka	
	(S. Ohno)	
	Nagashima K.	
Genetic Structure Analysis of the Japanese Sca	(Sato M.)	
llop Population in Hokkaido, Japan, on the Bas	(Kawamata K.)	Marine Biotechnology, 7(1), 1-10(2005)
is of Mitochondrial Haplotype Distribution.	(Nakamura A.)	
	Ohta T.	
	(Sato M.)	
	(Kawamata K.)	
Development of Microsatellite Markers for	(Zaslavskaya N.)	
Japanese Scallop (Mizuhopecten yessoensis) and	(Nakamura A.)	Marine Biotechnology, 7(6), 713-728(20
Their Application to a Population Genetic Stu	Ohta T.	05)
dy.	Nishikiori T.	
	(Brykov V.)	
	Nagashima K.	
カバノアナタケ(Inonotus obliquus)抽出液を付加 した機能性チーズの製造	渡邉 治	食品の試験と研究, 40, 51-53 (2005)
よくわかるQ&A「道産小麦でパンを焼くポイント」	山木一史	ニューカントリー, 52(12), 34-35(2005)
新春アンケート「道産の消費を探せ!」	田村 明	ニューカントリー, 53(1), 28(2006)

4-3 学会等発表

発表題目	発案者	発表日	学会名
Immunological activities <i>in vitro</i> of the crude polysaccharide from brown seaweed, sujime (<i>Costaria Costata</i> Saunders) and its antitumor effect on the transplantable tumor cells in mice by oral administration	Ohta T Tanaka A Yoshikawa S Nishikiori T (Kuramata K)	17. 5. 25 ~26	第2回国際シンポジウム 「海洋生物資源の健康機能性」 北海道大学大学院水産科学研究科 21世紀 COE プログラム
スジメ多糖抽出物の経口投与による抗腫瘍 活性	太田智樹 田中彰 吉川修司 (倉又一成) (栗原秀幸)	17. 8. 30	日本食品科学工学会第2/回大会
アロニア果実の加工食品への利用	田村吉史 (藤田隆明) 吉川修司 田中常雄	17, 8, 31	日本食品科学工学会第22回大会
Molecular population genetic study of Japanese scallop	(佐藤希実) 長島浩二 (川真田憲治) (ナジャ・ザ、スラフスカヤ) (中村 葵) 太田智樹 錦織孝史 田中 彰 吉川修司	17. 10. 10	北海道大学21世紀COEプログラム 国際シンポジウム
植物発酵エキスの熟成過程における菌叢解 析と撹拌の影響	能登裕子 中川良二 八十川大輔 長島浩二 (福士宗光)	17. 10. 06	平成17年度産業技術連携推進会議 生命工学部会 東北・北海道地域部会
常圧過熱水蒸気の食品加工における利点	阿部茂	17. 11. 10	平成17年度 食品関係技術研究会
担子菌成分を付与した機能性チーズの製造	渡邉 治	17. 11. 10	平成17年度 食品関係技術研究会
道産米の高次利用に関する研究	山木一史	17. 11. 10	平成17年度 食品関係技術研究会
酵素処理によるタマネギの食品素材化と利 用	槇 賢治	18. 2. 6	北海道農業試験研究推進会議農産利用部会
野菜抽出酵素液(F&E)摂取のヒト腸内細 菌叢に与える影響 ~新T-RFLP法による評価	長島浩二 (福士宗光) (本橋智枝子) 八十川大輔 (神林 勲) (武田秀勝)	18. 2. 25	平成7年度日本食品科学工学会北海道支部会

1 予算及び事業概要

(単位:千円)

予算名	17年度最終予算	18年度予算	事業概要
科学技術振興費	70, 646 (46, 344)	44, 284 (37, 381)
重点領域特別研究費	17, 130 (17, 130)	12,875(12,875)研究開発方針の研究開発の重点事項 に対応する事業化・実用化に結びつく研究課題を実施する。
一般試験研究費	22, 245 (22, 245)	22, 952 (22, 952) 食品加工に関する総合的な試験研究を実施する。
受託試験研究費	8, 380 (0)	200(0) 国や独立行政法人、企業等からの引託を受けて試験研究を実施する。
民間等共同研究費	10,069(0)	2,750(0) 北海道共同研究規程に基づき民間 業等と共同研究を実施する。
外部資金活用研究費	4,750(0)	2,850(0) 国や独立行政法人等が公募する研究 事業に応募し、採択された試験研究 を実施する。
依賴試験費	1,103(0)	1,103(0)企業等の新製品開発や新技術の導 を支援するため、依頼を受けて試験 や分析を行うとともに、設備、機器 等を開放する。
試験研究用備品整備費	6, 969 (6, 969)	1,554(1,554) 試験研究及び技術指導等に必要な(品の整備を図る。
は品加工研究センター費	95, 775 (91, 776)	77, 899 (77, 899)
維持管理費	87, 579 (87, 579)	73, 729 (73, 729)センターを維持管理するための行政 経費及びデータベース整備・運営 係わる経費
技術指導普及事業費	8, 196(4, 197)	4, 170 (4, 170)企業等の技術力の向上や製品の高行 加価値化等を図るため、技術講習会 や移動食加研を開催するとともに、 研究成果や食品加工等に関する情幸 等を広く提供する。
合 計	166, 421 (138, 120)	122, 183 (122, 183	

^{※1 18}年度予算は当初予算額、() 内は一般財源額

^{※2} 受託試験研究費、民間等共同研究費、及び外部資金活用研究費については、契約等で金額の変更有り

2 沿 革

大正12年4月 札幌郡琴似村の「北海道工業試験場」において醸造に関する試験研究業務を開始。 昭和24年10月 「北海道工業試験場」が北海道に移管され、「北海道立工業試験場」となる。

63年6月 「食品加工研究所(仮称)建設基本構想検討委員会」の意見をもとに、「建設基本構想」策定。

平成 元年3月 「北海道立食品加工研究センター(仮称)建設基本計画」を策定。

4年2月15日

「北海道立食品加工研究センター」開設(工業試験場食品部を移管拡充)。 職員定数33名(うち研究員23名)

6年4月 研究職員4名増員

(北海道立十勝圏地域食品加工技術センター(運営:(財)十勝圏振興機構)及び オホーツク圏地域食品加工技術センター(運営:(財)オホーツク圏地域振興機 構)への派遣職員)

- 13年6月 10周年記念講演会開催
- 16年4月 機構改正を行い、技術支援体制の強化及び社会的ニーズに対応した研究体制の整備を図る。

3 組 織

職員数40名(うち研究職員30名)平成18年4月1日現在

4 施 設

敷 地 面 積 20,000.24㎡ 建物延床面積 5,480.59㎡

研究棟 鉄筋コンクリート造3階建4,270.86㎡ 試験棟 鉄筋コンクリート造1階建1,114.49㎡ その他 95.24㎡

5 主要設備・機器

試験研究用機器

- · 核磁気共鳴装置
- ・高速液体クロマトグラフ
- ·電子顕微鏡(透過型、走査型)
- 自記分光蛍光光度計
- ・ドウコーダー
- 示差熱走杳熱量計
- 万能引張試験機

加工試験用機器

- ・エクストルーダー
- 薄膜真空蒸発装置
- ・マイクロ波減圧乾燥装置
- ・レトルト殺菌機
- ・試験用製めん機
- · 遠赤外線常圧 · 減圧乾燥機
- ・加圧・減圧かくはん試験機
- ・シュリンク包装機
- · 真空包装機

- ・ガスクロマトグラフ質量分析計
- ・イオンクロマトグラフ
- 近赤外分光分析計
- · X線回折装置
- 原子吸光分光光度計
- · 超臨界流体抽出分離装置
- · 超高圧処理装置
- 膜分離装置
- ・アイスクリーマー
- 真空フライヤー
- ・パン生地製造装置
- · 真空凍結乾燥機
- ・かくはん混合造粒機
- 急速凍結装置

6 主要試験・分析

依頼試験

- 一般生菌数
- 乳酸菌数
- •大腸菌群
- ・ブドウ球菌
- サルモネラ菌
- 屈折率測定

依頼分析

- ・灰分分析
- ・たんぱく質分析
- 食塩分析
- ・アミノ酸組成分析
- ・水溶性ビタミン分析
- · X線微小部分析
- 脂肪酸組成分析

- 耐熱性菌数
- ・真菌数 (カビ・酵母)
- 大腸菌
- ・腸炎ビブリオ菌
- ・pH測定
- · 水分活性測定
- ·水分分析(絶乾法)
- ・脂質分析
- · 有機酸組成分析
- ・アルコール分析
- •無機質分析
- ・脂溶性ビタミン分析

7 利用方法

内	容	申込・手続き等	お問い合わせ窓口
共同研究の受付は		随時受付・有料 共同研究を行う場合には、「北海道共同研究規程」 に基づき手続きを行います。	企画係 Tel 011-387-4113
	食品加工技術に関する 随時受付・無料 総合的な相談は 電話、来所、文書など形式は問いません。		相談指導係 Tel 011-387-4115
技術支援(申込みは	現地・所内)の	随時受付・無料 技術指導依頼書又は電話等でお申し込み下さい。	
	分析の申込みは	随時受付・有料 依頼試験分析申込書、設備使用申込書等でお申 込みください。手数料・使用料は北海道収入証 紙をちょう付していただきます。 なお、申込書は、当センターホームページ (http://www.foodhokkaido.gr.jp)からダウンロード できます。トップページのメニューから「機器 設備」に移動しご利用下さい。	
	工研究センター 会等の申込みは	無料 所定の申込書によりお申込みください。	研究普及係 Tel 011-387-4114
技術研修生	の申込みは	随時受付・無料(ただし、研修に関する試料・ 消耗品等は負担いただきます。) 研修申込書によりお申込みください。	
施設見学の	申込みは	随時受付・無料 事前に文書でお申し込み下さい。	
図書等の閲り	覧は	随時受付・無料 主査(情報管理)にお越し下さい。	主査(情報管理) Tel 011-387-4114
工業所有権の	の利用は	随時受付・有料 主査(情報管理)にご相談下さい。	

- *1 お申込みの前にまず、電話等でご相談ください。
- *2 食品加工研究センターホームページでは、センターの組織や業務内容の概要のほか、技術講習会等のイベント情報も掲載していますのでご覧ください。(http://www.foodhokkaido.gr.jp)