│論文│ 電気泳動を用いた土壌修復に関する基礎的研究

Fundamental study of the electrokinetic process for soil remediation technology using salts as model substance

ABSTRACT

明本 靖広・若杉 郷臣・富田 恵一

AKEMOTO Yasuhiro*, WAKASUGI Motoomi* TOMITA Keiichi*

受付:2024年1月12日 受理:2024年2月29日

循環資源部環境システムグループ

Corresponding Author AKEMOTO Yasuhiro akemoto-yasuhiro@hro.or.jp

The electrokinetic process, a contaminated soil remediation technology, has the potential for in situ remediation; however, few studies are currently in Japan. Therefore, we conducted a fundamental study on the factors that affect the removal of pollutants using sodium and chloride ions, which are also factors involved in salt damage, as models. Sodium ions moved toward the cathode, and chloride ions moved toward the anode and there were transported outside the soil section. The anion removal rate decreased because of the electroosmotic flow from the anode to the cathode. Humic substances, organic matter commonly present in soil, interfere with sodium migration.

Keywords:Electrokinetic process, Electromigration, Electroosmotic flow, Salt damage, Soil remediation.

1. はじめに

有害な無機物を含む土壌は,自然・人為由来問わず様々な ものが存在し,その要因となる物質も重金属や過剰な塩類, 放射性物質など様々である.無機物の特徴として,有機物の ように分解して無害化という方策が取れないことが挙げられ る.そこで,環境中への拡散を防止するために低い溶解度の 化学形態へ変換する安定化,あるいは地下水との接触を遮る といった封じ込め方法が提案されている.本来であれば有害 物質そのものを分離することが望ましいが,無機物に対して 有効な分離技術は少なく,現状では有害物質を土壌ごと取り 出す掘削除去が一般的である.しかし,掘削や運搬時の飛散 に伴う二次汚染が懸念されることや資源としての土が失われ てしまうといった点で課題がある.

本研究で着目した動電的手法は、土壌に電位を印加するこ とで発生する電気泳動および電気浸透流を用いて土壌中の物 質を分離する技術である¹⁾.電気泳動は電場におけるイオン の動きであり、正電荷を有する陽イオンは陰極方向へ、負電 荷を有する陰イオンは陽極方向へそれぞれ移動する(図1). 電気浸透流は電位の印加に伴って発生する水の流れである. 土壌表面は主に負電荷を有するため、配向した陽イオンが電 気泳動によって陰極側へ移動する際に,配位した水分子が一 緒に移動する.さらに水分子は粘性によって周囲の水分子を 引き連れて動くことになるため,全体として陰極方向へ水の 流れが発生する.この動電的手法は土壌を掘削することなく 汚染が生じたその場(原位置)で施工可能という特徴や,透 水性の低い土壌にも適用可能であるという利点を有している が,国内での検討例は極めて少ない.そこで本研究では,比 較的分離が容易と想定され,且つ塩害の要因物質でもあるナ

図 1. 動電的手法の概念図 Fig. 1. Schematic diagram of electrokinetic process

トリウムおよび塩化物イオンを対象に,この動電的手法にお ける電位の印加時間や共存物質などの諸条件が土壌中の物質 移動に与える影響に関して,基礎的な検討を行った.

2. 実験

2.1. 土壌

模擬土壌として,白陶土(化学用,富士フイルム和光純薬株式会社)を用いた.この物質は白色の粉末で,汚染物質に対する吸着能や pH 緩衝能が低く,電位の印加条件に対する対象物質の挙動を観測しやすいことから,模擬土壌として採用されている^{2).3)}.

模擬腐植土壌は白陶土にフミン酸(富士フイルム和光純薬 株式会社)を加えて作製した.腐植物質は天然に存在する不 定形高分子の有機化合物であり,カルボキシ基やフェノール 性水酸基を有していることから,金属との錯体形成能を有す る.また,腐植物質そのものが疎水性であるために疎水性相 互作用や,界面活性能なども有している⁴⁾.先述の通り腐植 物質は不定形であり,構造を定めることが極めて難しい一方で, 環境中における物質移動・循環に大きく寄与している⁴⁾.腐植 物質は化学的な溶解度によってフミン酸,フルボ酸,ヒューミ ンに大別されるが,入手の容易さなどによりフミン酸が代表的 に用いられる場合が多いため,本研究でもフミン酸を採用した.

2.2 模擬土壌の作製

白陶土に対して重量比 1:4 の割合で純水を加え,軽く振と うさせて粘土鉱物を分散させた.その後,塩化ナトリウム溶 液を添加し,150 rpm で 24 時間振とうした.泥状の混合物 をポリビーカーに移し,105℃で一晩(約16時間)乾燥させ, メノウ乳鉢で軽く粉砕したものを模擬土壌とした(ナトリウ ム濃度:200 mg/kg).この土壌に対して含水率が 30% 程度 になるように純水を加え,良くかきまぜたものを試験に用いた.

腐植物質を含む土壌においては、白陶土に対して炭素濃度 が 10% 程度になるようにフミン酸粉末を混合させ、含水率 が 30% 程度になるように純水を加えたものを模擬腐植土壌 とした.

2.3. 実験装置

本研究で使用した装置を図2に示す.アクリル樹脂製の 円柱状であり,内径3 cm で長さ10 cm の泳動槽と,内径 3 cm で長さ5 cm の2つの電極槽から構成されている.こ の装置には概ね80 g の土壌が充填されることになる.電位 の印加に伴って,陽極から陰極に向かって水の流れ(電気浸 透流)が発生するため,陽極の電解液は減少する.そのため, 液面センサー(株式会社藤原製作所)にペリスタリックポン プ(MP-1000,東京理化器械株式会社)を接続することで, 水位の減少に応じて自動的に純水を供給し,陽極電解液を一 定量に維持するシステムを構築した.反対に,電気浸透流の 集積によって陰極槽の水位は上昇していくため,陰極槽の上

図 2. a) 装置写真と b) 模式図

Fig. 2. a) Picture and b) schematic diagram of electrokinetic device

部には排出口を設け、シリコンチューブを接続してオーバー フローしてきた電解液をメスシリンダーで受けている.

電源はプログラム多出力電源(PPS303, アズワン株式会 社)を用いた.電流値は電源に内蔵されている電流計によっ て逐次記録した.電極は直径3 cm で厚さ1 mm のメッシュ 状チタン電極に白金をコーティングしたものを用いた.先述 した電気浸透流は電極も通過していく必要があり,この水の 流路を確保するためにメッシュ状にしている.また電極の溶 解などを伴わずに,安定して使用し続けることを念頭に不溶 性の素材を用いた.

土壌と電極の間には、直径3 cm になるように円形に切り 出した定量ろ紙(5C,アドバンテック東洋株式会社)を配 置し、土壌が電極槽へ流出するのを防止している.電極槽と 泳動槽の間にはシリコン0リング(株式会社コクゴ)を挟 み込み、留め具で固定することで水漏れを防止している.

2.4. 分析方法

電位の印加後, 泳動槽中の土壌を陽極側から2 cm ずつ取 り出し (Section 1 ~ 5), 105℃で一晩乾燥させ, その重量 変化から含水率を算出した. 乾燥土壌はメノウ乳鉢で粉砕 し,以降の抽出操作に用いた. 乾燥土壌に対して固液比で 1:5 となるように超純水を加え, 1000 rpm で 1 時間振盪させ た (1:5 水抽出法⁵). また, 陽極・陰極の電解液, オーバー フローにて得られた排出電解液中のナトリウム濃度はフレー ム原子吸光光度計(ZA-3300,株式会社日立ハイテクサイエ ンス)で測定した.同操作で得られた検液中の塩化物イオ ンは、イオンクロマトグラフで測定した(Compact IC 861, Metrohm AG).分離カラムはSI-90 4E(Shodex,昭光サ イエンス株式会社),溶離液はカラム推奨の1.8 mmol/L Na₂CO₃/1.7 mmol/L NaHCO₃を用い、流速1 mL/min の条 件で分析を行った.腐植物質を添加した土壌においては、同 抽出方法で得られた検液中の有機炭素濃度を全有機炭素計 (TOC-V_{CPH},株式会社島津製作所)で測定した.

白陶土は X 線回折装置(Smart Lab,株式会社リガク)に て CuK α 線を用い,5-65°の範囲で 0.01 step,1°/minの スピード,管電圧は 40 kV,管電流は 30 mA で測定した.

土壌の炭素量は全自動元素分析装置(Vario EL cube, エ レメンター株式会社)を用い,燃焼法にて測定した. 陽イオ ン交換容量(Cation exchange capacity; CEC)は村本らの手 法に基づいて測定し⁶,フミン酸ナトリウムのカルボキシ基 量は酢酸カルシウム法を用いて求めた⁷.

2.5. 除去率の算出

ナトリウムの除去率は以下の式を用いて算出した.

$$R = \frac{A_C + A_E}{A_I} \times 100$$

ここで, Rは除去率(%), A_cは陰極槽中のナトリウム量 (mg), A_Eは排出電解液中のナトリウム量(mg), A_Iは実験 前の土壌中ナトリウム量(mg)を示している.一方,塩化 物イオンの除去率は, A_cに陽極槽中の塩化物イオンの量(mg) を入れることで算出した.

3. 結果

3.1. 作製した土壌の性質

模擬土壌として用いた白陶土のX線回折結果を示す (図3).解析の結果,ケイ酸塩鉱物の一つであるパイロフィ ライトと石英を主成分とする混合物であった.表1に白陶 土および作製した模擬腐植土壌の性質を示す.白陶土の炭 素量は定量下限以下(<0.8%)であり,CECも低い結果と なった.このことは2.1で述べた錯体形成能やpH緩衝能が 低いことと矛盾しない.フミン酸を加えた模擬腐植土壌に おいては,炭素濃度として9.0%,CECは38.8 cmol/kgと いう結果となった.先行研究において十勝地方の厚層黒ボ ク土の性状が報告されており⁸⁾,この値と比較すると概ね同 程度となることがわかった.フミン酸のカルボキシ基量は 4.10 mol/kgと算出され,腐植物質標準試料である猪之頭フ ミン酸(4.35 mol/kg)とほぼ同程度であることがわかった. 3.2.印加時間および電位印加条件の変化に伴うナトリウムの 除去率の変化

印加時間が与えるナトリウムの除去率への影響を図4に 示す. 電位勾配を1 V/cmの条件で, 6, 24, 48, 72 時間

Fig. 3. X-ray diffractograms of white clay.

表 1. 模擬土壌の性質 Table 1 Characterization of the model contaminated soil.

	炭素濃度, %	$\rm CEC$ / cmol kg $^{-1}$
白陶土	< 0.8	4.4
模擬腐植土壌	9.0	38.8
厚層黒ボク土 ⁸⁾	8.8	38.3

図 4. 異なる印加時間におけるナトリウムイオンの除去率(電位 勾配 1 V/cm)

Fig. 4. Removal efficiency of sodium ion from the model contaminated soil at different operation time, potential gradient: 1 V/cm.

図 5. 異なる電位勾配における土壌中ナトリウムイオンの残留割 合(印加時間 6 時間)

電位を印加した際の除去率はそれぞれ45%,91%,97%, 98%であり,印加時間24時間で添加したナトリウムのほ ぼ全量が除去されていることがわかる.図5に異なる電位 勾配で6時間電位を印加した後の土壌ごとのナトリウム残 留割合を示す.縦軸はナトリウムの残留割合で,実験前の ナトリウム濃度で規格化している.この値は1より小さい と電位の印加後にナトリウム濃度が減少していることを示 している.電位勾配1,2,3V/cmにおける除去率はそれ ぞれ45%,76%,90%であり,6時間という短い時間でも 3V/cmにまで電位勾配を上げることで高い除去率が得られ ることが示された.

いずれの条件においても陽極中からはナトリウムは検出さ れなかった.また,陽極から電解液を供給し続けるため,含 水率は実験前後で大きく変化は見られなかった.

本研究においては,装置そのものの温度上昇は見られな かった.しかし,フィールドスケールで試験を行った結果, 1 V/cmを超える電位を印加した場合に土壌温度が100℃近く まで上昇するため,電力損失につながるという報告もある⁹⁾. 高電圧を用いれば除去に係る時間も短縮可能ではあるが,必 ずしも除去率が比例的に向上するわけではないことが推察さ れる.よって,実際の汚染区域に適用する際の電位勾配は概 ね1 V/cmが上限になると想定される.

3.3. 塩化物イオンの挙動

電位勾配 1 V/cm の時の塩化物イオンの残留割合を図 6 に 示す.塩化物イオンは陰イオンであり電気泳動によって陽極 へ移動するため,陰極側 Section 5 における濃度が減少し, 陽極側 Section 1 に集積することで濃度が高くなる.塩化物 イオンの移動度は 6.8×10^{-4} cm²/V s,ナトリウムイオン の移動度は 4.5×10^{-4} cm²/V s とされており¹⁰,塩化物イ

図 6. 異なる印加時間における土壌中塩化物イオンの残留割合 (電位勾配 1 V/cm)

Fig. 6. Distribution of chloride ion in the model contaminated soil at different operation time, potential gradient: 1 V/cm.

オンの方が大きな値を有する.しかし,除去率は6時間で 20%,24時間で34%とナトリウムイオンよりも低い除去率 になった.これは陰極方向への電気浸透流が発生しているた めに,塩化物イオンはこの水の流れに逆らって陽極側へ移動 することになる.結果として,ナトリウムよりも低い除去率 になったと考えられる.

3.4. 腐植物質を含む土壌におけるナトリウムの除去率変化

図7に模擬腐植土壌におけるナトリウムの残留割合を示 す.今回用いたフミン酸は既にナトリウムを含んでいた. そこで,フミン酸を含まない白陶土にナトリウムが同濃度 (600 mg/kg) 含むように添加した土壌を作製し,除去率の 比較を行った.

フミン酸を含まない土壌の場合,電位勾配1V/cmで6時間の印加時間の条件で,ナトリウムの除去率は34%であったが,フミン酸を含む土壌の場合は18%と低下した.腐植物質はカルボキシ基や水酸基などの多くの官能基を有するため,模擬土壌の陽イオン交換容量が上昇する.ナトリウムの移動においては,腐植物質が有する官能基からの相互作用を受けるために,除去率が低下したと考えられる.しかし,同条件で印加時間を24時間にした場合,除去率は91%まで向上した.このことから,ナトリウムの移動速度そのものは低下するものの,処理時間を長くとることで除去は可能であることが示された.

腐植物質は炭素濃度で評価しており,その値は実験前後で 大きく変わらなかった.先述の通り腐植物質はカルボキシ基 などの酸性官能基を有するため,その解離によって負電荷を 有するコロイドとしてふるまうことが予想される.電気泳動 移動度は電荷が大きく,サイズの小さな分子ほど大きな値と なる¹¹⁾.フミン酸の分子量は数千から数万⁴⁾とされており,

図7. 模擬腐植土壌中における電位印加後のナトリウムイオンの 残留割合(電位勾配1V/cm)

Fig. 7. Distribution of sodium ion in the model humic contaminated soil at different operation time, potential gradient: 1 V/cm.

その移動度は塩化物イオンなどの元素と比較して極めて小さ くなることが想定されるため、6時間の印加条件では変化が みられるほどに動かなかったと考えられる.また、3.3で言 及した塩化物イオンと同様に、フミン酸は負電荷を有するた め、電気泳動の方向としては陽極に向かって移動するが、こ れは陽極から陰極へ流れる電気浸透流の方向と逆行する.フ ミン酸自身の移動速度が遅いために電気浸透流に流されるこ とで、負電荷を有しながらも陰極側へ移動することが報告さ れている¹²⁾.これらのことから、本研究では腐植物質その ものの移動はあまり見られなかったと考えられる.

3.5. 電流値変化および消費電力

図8は3.2で示した24時間で91%のナトリウム除去率 が得られた際の電流値変化を示しており,24時間平均で 4 mAの電流値となった.印加電圧10Vおよび処理土壌量 を基に,以下の式を用いて消費電力を算出した¹³.

$$W = \frac{1}{V} \int EIdt$$

Wは消費電力(kWh), Vは土壌体積(m³), Eは電圧 (V), Iは電流値(A)を示している.本研究での模擬土壌 中のナトリウムを91%除去するためにかかった消費電力は 13 kWh/m³であった.動電的手法における消費電力は,除 去対象となる物質や求められる濃度基準,土壌環境などに よって処理時間が大きく異なることから,変動も大きいと 想定される.いくつかの先行研究を参照すると,概ね65~ 170 kWh/m³であった^{14),15)}.本研究では対象物質と相互作 用の小さい白陶土を模擬土壌として用いていること,ナトリ ウムが沈殿などを生じにくく比較的除去しやすいこともあ り,消費電力が既報よりも低い値となったと考えられる.

- 図 8. ナトリウム濃度 200 mg/kg, 電位勾配 1 V/cm, 電位印加 24 時間の条件における電流値変化. 直流電源内蔵の電流 計の分解能は 1 mA.
- Fig. 8. Electric current value under the conditions of sodium concentration 200 mg/kg, potential gradient 1 V/ cm, and 24 hours operation. The ammeter with a built-in DC power supply has a resolution of 1 mA.

4.まとめ

本研究では、ナトリウムと塩化物イオンを対象に、動電的 手法による土壌中の物質移動に関して基礎的な挙動の把握を 行った.

- ・ナトリウムは1 V/cmの電位勾配24時間で91%の除去 率となった.
- ・塩化物イオンはナトリウムよりも低い除去率となるものの、陽極側への泳動が確認された。
- ・腐植物質が共存することによりナトリウムの移動速度は 低下するものの,24時間の印加によって91%が除去さ れた.

土壌汚染対策法などで定められる対象物質として,鉛や砒 素,カドミウムなどが挙げられる.動電的手法においては対 象物質がイオンあるいは錯イオンのような電荷を有している 形態で土壌間隙水中に存在する必要がある.規制対象となっ ているこれらの物質においては,そのものの化学形態や適切 な可溶化手法などの検証が必要となるため,今後取り組んで いく予定である.

謝辞

本研究で使用した超純水製造装置,イオンクロマトグラフ, X線回折装置および全自動元素分析装置は,公益財団法人 JKAの補助を受けて整備されました.また,土壌や腐植物質 の扱いなどについて,石黒宗秀名誉教授(北海道大学),倉 光英樹教授(富山大学)に知見を伺いました.ここに記して 感謝申し上げます.

引用文献

- Acar Y.B. and Alshawabkeh A.N., 1993, Principles of Electrokinetic Remediation. Environmental Science and Technology, 27 (13), 2638–2647.
- Al-Shahrani S.S. and Roberts E.P.L., 2005, Electrokinetic removal of caesium from kaolin, Journal of Hazardous Materials, 122 (1–2), 91–101.
- Kimura T., Takase K-I., Terui N., Tanaka S., 2007, Ferritization treatment of copper in soil by electrokinetic remediation, Journal of Hazardous Materials, 143 (3), 662–667.
- 4) 環境中の腐植物質 その特徴と研究法, 2008, 三共出版
- 5) 土壤標準分析 · 測定法 POD 版, 2004, 博友社
- 6) 村本穣司,後藤逸男,蜷木翠,1992,振とう浸出法による土 壌の交換性陽イオンおよび陽イオン交換容量の迅速分析,日本 土壌肥料学雑誌,63(2),210-215.
- 7) 腐植物質分析ハンドブック 第二版, 2019, 農山漁村文化協 会
- 8) 谷昌幸,2013,土壌有機物の機能と有機物を活用した土づくり、土壌の物理性,123,5-10.
- 9) Athmer CJ., Ho SV., 2009, Field studies: organic-contaminated soil remediation with Lasagna technology. In: Reddy KR, Cameselle C (eds) Electrochemical remediation technologies for polluted soils, sediments and groundwater. Wiley, Hoboken, pp 625–646

- 10) 島尾和男, 1997, 電気泳動法の基礎知識, 生物物理化学, 41 (1), 1-11.
- 11) 電気泳動分析(分析化学実技シリーズ), 2010, 共立出版
- 12) Iwamura T., Akemoto Y., Tanaka S., 2020, Enhancement effect of humic acid on removal of lead from soil by electrokinetic process, Analytical Sciences, 36, 627–630.
- 13) Zhao M., Ma D., Wang Q., Wang Y., Sun X., 2022, Electrokinetic remediation of Cd-contaminated soil using low voltage gradients coupled with array adsorption zone and polarity exchange, Process Safety and Environmental Protection, 157, 81–91.
- Lageman R., 1993, Electroreclamation. Applications in the Netherlands, Environmental Science and Technology, 27 (13), 2648–2650.
- 15) Kim D-H., Yoo J-C., Hwang B-R., Yang J-S., Baek K., 2014, Environmental assessment on electrokinetic remediation of multimetal-contaminated site: a case study, Environmental Science and Pollution Research, 21, 6751–6758.

要 旨

汚染土壌修復技術の一つである動電的手法は原位置浄化手法としての可能性を有するが,国内での検討例が少ないのが現状である.そこで,汚染物質の除去に与える因子に関して,塩害の要因物質でもあるナトリウムイオンおよび塩化物イオンをモデルとしてその基礎的な研究を行った.陽イオンであるナトリウムイオンは陰極方向へ,陰イオンである塩化物イオンは陽極方向へそれぞれ移動し,土壌系外まで運ばれた.陽極から陰極に向かって発生する電気浸透流の影響により,陰イオンの除去率は低下することがわかった.また,土壌有機物の一つである腐植物質が,ナトリウムの泳動に与える影響の有無について検証し,腐植物質の存在によってナトリウムの泳動が妨害されることを確認した.