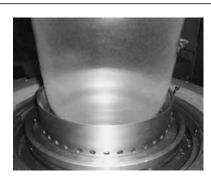
研究開発成果11/新材料の開発と利用・道内資源の有効利用

ホタテ貝殻充てん包装用フィルムの開発

Development of Packaging Film from Scallop Shell and Biomass Plastics

材 料 技 術 部 金野 克美 ものづくり支援センター 吉田 昌充 企 画 調 整 部 可児 浩


■研究の背景

2002年12月に閣議決定された「バイオマス・ニッポン総合戦略」により、バイオマス資源の活用を国の重点施策として推進する機運は、我が国のバイオマス利用技術を発展させるものと期待されています。このような中、バイオマスに由来する素材や製品開発により多くの技術や製品が生まれつつあります。

最近、道内産の農水産物や加工食品の需要拡大のために長距離移送が必要となってきています。そのため従来よりも広域かつ長期間にわたる低温輸送が必要となり、低温環境下での優れた性能を有する包装資材が要求されています。本研究では、バイオマス素材であるホタテ貝殻およびバイオマスを原料としたポリ乳酸、生分解性プラスチックであるポリブチレンサクシネート(PBS)をコンパウンドしたフィルムを用いて、包装資材としての各種特性を検討しました。

■研究の要点


- 1. ポリ乳酸とPBSブレンド材へのホタテ貝殻充てん量の検討
- 2. インフレーション成形による成形条件の確立
- 3. フィルムの機械的物性の常温および低温下での評価
- 4. 包装用フィルムとしての鮮度保持性、抗菌性等の評価

インフレーション成形

ラミネート加工

貝殻充てんフィルム

■研究の成果

- 1. ホタテ貝殻を15%充てんしたバイオマスプラスチックのインフレーション成形が可能となりました。
- 2. 充てん量が増えると強度は小さくなりますが、実用上問題がないことを確認しました。
- 3. 引裂強度が非常に小さいが、ナイロンのラミネート加工することで解決できることが分かりました。
- 4. 低温下では強度は大きくなりますが、伸びが小さくなって脆くなることが分かりました。これらを解消するためには柔軟件の改良が必要であることが分かりました。
- 5. 水分の存在化で抗菌性が示されたことにより、野菜など水分を含んだものの包装に適しているといえます。

北海道大学農学研究院、北一化学㈱