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エッジAI向け異常検知モデルに関する研究
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抄　録

近年、生産者人口の減少から人手不足が深刻であり、製造業において省人化、自動化のニーズが高まっている。

一次産業が基幹産業である北海道では、農水産物の原料受入検査や食品製造業における異物の目視検査など、人

手のかかる作業の自動化が望まれている。このため、AIを組み込んだ検査機械の開発などが活発に行われてい

る。これまではエッジデバイス（たとえば、Raspberry Piなどの小型の組込計算機）で収集したデータをサーバー

側のAIで処理していたが、通信による遅延のためリアルタイム処理に向かないこと、エッジデバイスの数が増

えるとネットワークの通信帯域がひっ迫すること、インターネット経由でデータをクラウドに送信することがセ

キュリティ上のリスクになるなどの問題があった。最近ではエッジデバイスにAIを実装し装置に組み込むケー

スが増えてきているが、計算能力の関係から学習はクラウド上のサーバーなどで行い、構築した学習モデルをエッ

ジデバイスに組み込んで推論用として用いている。このようなAIを現場で運用する場合に、最初に組み込んだ

学習モデルのままでは取り扱うデータの傾向の変化やセンサの経年変化などに対応できずに生じてしまう予測性

能の劣化が問題となっている。

本研究では、予測性能が劣化する前に、エッジデバイス上で学習モデルを適宜更新する機能を実現することを

目指して、少数の訓練データのみの学習で学習モデルを構築する手法である、スパースモデリングやリザバーコ

ンピューティングを用いた異常検知技術の開発を行った。画像や分光データ、音声などの少量のデータを対象と

して異常検知モデルを構築し、評価を行ったところ、少量の訓練データで十分な性能が得られることがわかった。

キーワード：異常検知、エッジデバイス、スパースモデリング、リザバーコンピューティング

Abstract

A shortage of workforce due to decreasing working age population have been getting severe in recent

years, therefore, a lot of demands for labor-saving systems or autonomous systems are growing.

Especially in Hokkaido, where major primary industry consisted of agriculture and fisheries, autonomous

inspection systems for detecting foreign matter or deteriorations among agricultural crops or fishes in

sorting facilities or food factories are strongly desired. Inspection machines have been evolved to have high

performance in inspecting products, because of cutting edge deep learning implemented in those devices.

Early AI systems implemented in edge devices require communication with cloud server to get prediction

results, this procedure results in decreasing real-time performance because of network latency, also in

short bandwidth on a network because a substantial number of edge devices all at once connect to network.

In these days, AI estimation models build on cloud server have been implemented in edge devices such as

Raspberry Pi. The performance of prediction with first implemented AI model is tend to gradually decline

along with time passing, because of data drift or sensor deterioration over time. To maintain performance,

updating AI model only in the edge device is getting most important to prevent network congestion.

In this research, we utilize anomaly detection techniques with sparse modeling for image data, and also

with reservoir computing for time series data, and examined the performance in the condition of a small

numbers of training data. We developed and tested several anomaly detection models, and ultimately

achieved satisfactory performance.

KEY-WORDS : Anomaly detection, Edge device, Sparse modeling, Reservoir computing
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1. はじめに

近年、生産者人口の減少から人手不足が深刻であり、製造

業において省人化、自動化のニーズが高まっている。一次産

業が基幹産業である北海道では農水産物の原料受入検査や食

品製造業における異物の目視検査など、人手がかかる作業の

自動化が望まれている。一方、深層学習などによりAIの性

能が飛躍的に高まったことを受けて、AIを組み込んだIoT機

器の開発が活発に行われている（図１）。最近ではエッジデ

バイス（たとえば、Raspberry Piなどの小型の組込計算機）

にAIを実装し使われるケースが増えてきているが、計算機

の能力が限られているため膨大な計算量を必要とする学習用

途ではなく、主として推論用として用いられている。このよ

うなAIを現場で運用する場合、エッジデバイス上では学習

モデルを更新することが困難なことから、取り扱うデータの

傾向の変化やセンサの経年変化などが原因で生じる予測性能

の劣化が問題となる。これを防ぐためには、予測性能が劣化

する前にエッジデバイス上で学習を行い学習モデルを適宜更

新することが重要である。

本研究では、エッジデバイス上で学習・推論の機能を実現

することを目指して、少数の訓練データのみの学習で十分な

予測性能を実現可能なスパースモデリングやリザバーコン

ピューティングによる異常検知技術に関して開発を行った。

図１　エッジデバイスとクラウドサーバー

のネットワークのイメージ　

2. エッジデバイスへのAIの実装

2.1　エッジデバイスでのAI機能の実現方法

エッジデバイスにおいてディープラーニング等のAI機

能を実現する方法の一つは、クラウドサーバーでAI機能を

実行し、エッジデバイスはセンシングのみを行うというもの

である（図２）。初期のディープラーニングは学習モデルが

大きいため、当時のエッジデバイスに実装できないことが多

かった。そこで、エッジデバイスではデータの送受信だけ

を行い、AI推論はサーバーで実行する形態がよく使われた。

この場合は通信時の遅延が発生するため、リアルタイム処理

が困難であった。最近はディープラーニングの研究が進み、

モデル圧縮など軽量化技術が進展したことやエッジデバイス

の性能向上により、エッジデバイスにAIモデルを組み込ん

で推論機能を実行することが可能となってきた（図３）。す

なわち、エッジデバイスでデータをセンシングし、内蔵する

AIで推論を行い、その結果にもとづいて制御を行うことが

できるようになった。この場合、AI処理の実行時にサーバー

との通信は発生しないためリアルタイム処理が可能である。

図３　学習モデル構築はクラウドサーバーで行い、推論は

エッジデバイスで行う場合　　　　　　　　

2.2　AIモデルの劣化への対応

ディープラーニングによるAIモデルの学習では、まず訓

練データを収集しモデルを構築することから始める。ディー

プラーニングではニューラルネットワークのパラメータ数が

多いため、多くの訓練データが必要となる。すなわち、高い

正解率と汎化性を実現するモデルを構築するには大量の訓練

データを収集する必要がある。それらを学習して構築した

モデルをエッジデバイスに実装して運用することになるが、

データの季節変動や年次変動、またはエッジデバイスで使用

しているセンサの経年劣化などが原因で機械学習モデルの性

能が低下する可能性がある。たとえば、センサの劣化が原因

で推論性能が低下した場合はセンサの交換を行うなどの対応

も考えられるが、センサの特性にばらつきがある場合は同一

型番のセンサでも再度キャリブレーションをし直す必要が

あったり、さらには機械学習モデル自体を構築し直す必要が

ある。ディープラーニングの機械学習モデルの構築は計算量

図２　クラウドサーバーで学習モデル構築と推論を実行

する場合　　　　　　　　　　　　　　　
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が多いため、GPUなどのアクセラレータを持たない、計算

資源の限られたエッジデバイスでは対応が困難である。その

ため、ネットワーク経由で訓練データをサーバーに送って機

械学習モデルを再構築することになる。しかし、大量の訓練

データの送信はネットワークの通信帯域を消費し、さらに、

他の多数のエッジデバイスが学習モデルの構築を行うこと

は、たとえ高性能なサーバーでも負荷の高いタスクである。

この問題を解決するには、エッジデバイス上で機械学習モデ

ル構築が実行できるようにすればよい（図４）。具体的には

エッジデバイスの性能を上げる、もしくは計算量のかからな

いアルゴリズムを使うなどの方法が考えられる。エッジデバ

イスの性能を向上させる方法として、たとえばGPUを搭載

したエッジデバイス（NVIDIA Jetson AGX Orinなど）を

使うことが考えられるが、この製品は価格が30万円以上（2025

年時点）であり、通常のPCよりも高価になってしまうため、

コスト的な合理性は低くなる。

一方、計算量のかからないアルゴリズムとして近年注目さ

れているのがスパースモデリングとリザバーコンピューティ

ングである。スパースモデリングは画像データ等への適用事

例が、またリザバーコンピューティングは時系列データへの

適用事例が多い。これらのスパースモデリングおよびリザ

バーコンピューティングによる異常検知技術について次に説

明する。

図４　学習モデルの構築、推論をエッジデバイスで

行う場合　　　　　　　　　　　　　

3. 異常検知手法

3.1　画像データに対する異常検知手法

機械学習を用いて、ある母集団に属するデータの異常を

検知するには、その母集団での正常データを学習し、正常

データを生成するような学習モデルを構築すればよい（すな

わち、入力データと出力データが同じになるように学習モデ

ルをトレーニングする）。この学習モデルに異常のあるデー

タを入力すると、異常部分は学習していないため、入力デー

タと等しくなるような出力データの生成に失敗する。この生

成に失敗した出力データと入力データの差を求めることによ

り異常を検知する。本研究では、少ない訓練データで異常検

知を行うスパースモデリングの手法の有効性を確認するため

に、オートエンコーダ型のニューラルネットワークモデルで

あり異常検知が可能なVAE（Variational Auto Encoder）1）、

およびこれをベースとして中間層にスパースコーディング

（スパース辞書学習）を組込んだVSC（Variational Sparse

Coding）2）を用い、性能を比較した。さらに、画像分類のニュー

ラルネットワークモデルであるVGG163）の中間層の出力を

入力データとしてスパース辞書学習を行うMLF-SC（Multi-

Layer Features to Sparse Coding）4）について訓練データ

量と推論性能、異常検知性能などの評価を行った。

3.2　時系列データに対する異常検知手法

時系列データ用のネットワークモデルとしてリカレント

ニューラルネットワーク（Recurrent Neural Network、以

下、RNN）がよく用いられる。このニューラルネットワー

クでは出力層の信号を入力層に接続することにより、時間的

に過去の情報を反映したネットワークを構築することができ

る。リザバーコンピューティングは、このRNNをベースと

した機械学習モデルである。リザバーコンピューティングで

は中間層がランダムな固定の重みで結合された構造となって

いる。このようにランダムな結合重みでニューロン同士が結

合された中間層はリザバー層と呼ばれ、過去の情報を含んだ

高次特徴量を出力する。リザバー層では重みは固定であり学

習する必要がなく、出力層のみ学習すればよいため、通常の

RNNに比べ格段に計算量が少なくなる。リザバーコンピュー

ティングを用いた時系列データに対する異常検知手法も前述

した画像データに対する異常検知手法と考え方は同じであ

り、目標信号と予測信号の差で評価する。具体的には、入力

層に入力したデータについて、一定時間後の出力データを予

測するように出力層の重み調整の学習を行う。予測したデー

タと実際の信号との差が小さければ正常、差が大きければ異

常と判断する。本研究ではリザバーコンピューティングの実

装としてEcho State Network（以下、ESN）5）を用いた。

4. VSCによるスパースモデリングの性能評価

VAE（図５）は、事前分布がガウス分布であるデータを

対象として、データをその平均と標準偏差およびガウス分布

で表現し、内部の潜在変数をランダムサンプリングするオー

トエンコーダである。VSCは中間層において潜在変数をサ

ンプリングするための事前分布をVAEで用いているガウス

分布からSpike & Slab分布（ガウス分布の中央部分の確率を

高くした分布）に変更したものである（図６）。この変更に

よりデータ表現のパラメータを少なくすることが可能であ

る。すなわち、少ないデータで機械学習モデルの構築が可能

となる。
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4.1　MNIST手書き数字データセットを用いた性能評価

MNISTは米国のNIST（国立標準技術研究所）が整備し

ている機械学習用のデータセット6）であり、ディープラー

ニングのネットワークモデルの性能評価に広く利用される。

本研究では手書き数字データセット（訓練データ用：60000

枚、テストデータ用：10000枚）の訓練データについて、ラ

ンダムに所定の数の画像を抽出し、データセットを作成し

てVAEとVSCに学習させ、訓練データのサイズとモデルの

性能の関係を再構成誤差（ここでは平均二乗誤差、Mean

Squared Error : MSE）により評価した。また、同じ条件に

おいてVAEとVSCの学習における計算時間を比較し、リア

ルタイム処理への影響を評価した。さらに、計算資源が豊富

なパーソナルコンピュータ（以下、PC）と計算資源の限ら

れたエッジデバイスでVAE、VSCによる学習を行った場合

の計算時間を比較した。

4.2　実験

VAE、VSCの各々のニューラルネットワークのハイパー

パラメータ（入力層および出力層サイズ（＝768）、中間層

サイズ（＝400）、バッチサイズ（＝10）、エポック数）を同

一とし、訓練データ数のみを変更して評価した。どちらも

Pythonで実装したコードをシングルスレッドで実行した。

学習モデルを構築するにあたり、バッチサイズとエポック数

を決める必要がある。訓練データ数の最小を50と設定したの

でバッチサイズは訓練データ数よりも小さい10とした。エ

ポック数については、事前の予備実験により再構成誤差の減

少が収束する最小限の回数とし、ここでは1000に設定して評

価を行った（図７、図８）。

訓練データ数を変更しながらVAEとVSCの再構成誤差の

変化を調べた（図９）。その結果、訓練データ数が少ない場

合はVSCの方が高性能であることがわかった。訓練データ

数を50としてVSC学習モデルを評価した場合のMNIST手書

き数字の入力と出力を図10に示す。入力画像と出力画像の差

が小さく、ほぼ同じ画像が生成できていることから、少ない

訓練データで性能のよいAIモデルの構築ができることがわ

かった。

図９　訓練データ数と再構成誤差の関係

（VAEとVSCを比較）　　　

図８　エポック数と再構成誤差の関係

（訓練データ数＝800）　

図７　エポック数と再構成誤差の関係

（訓練データ数＝50）　　

図５　VAEおよびVSCで用いるネットワーク構造　

図６　VAEで用いるガウス分布（左）とVSCで用いるSpike 

& Slab分布（右）　
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4.3　計算時間

VSCとVAEでは、中間層の潜在変数を生成するときに用

いる事前分布が異なる。事前分布による計算は学習モデル構

築時や推論時で毎回行われるが、VAEで用いているガウス

分布よりもVSCで用いているSpike & Slab分布の方が計算

ステップが多いため、計算時間がかかると予想される。そこ

でPC（CPU : Intel Core i7 8700K）とRaspberry Pi 4B+（以

下、RPi4）（CPU : ARM Cortex-A72）とを用いて、訓練

データ数を変えながらVSCとVAEの計算時間を計測し、そ

れらの比（VSC/VAE）を求めた。その結果、VSC/VAE

の値はPC、RPi4のどちらの場合でも訓練データ数によらず

1を超えていることから、VSCはVAEよりも計算時間がか

かることがわかった（PCで約16％、RPi4で約8％程度）（図

11）。VSC自体はVAEよりも10％ほど計算時間が多くなるデ

メリットがあるが、少ない訓練データで高性能な学習モデル

を構築できることから全体的には処理時間の低減を実現で

きることがわかった。次に、1エポック数当たりの計算時間

をPCとRPi4とで比較した（図12）。訓練データ数を50から

2000まで変化させながら計測した結果、訓練データ数によら

ず、PCはRPi4よりも約13倍高速であることがわかった（計

算時間については、たとえば訓練データ数＝50の場合、PC

が0.028秒に対し、RPi4は0.372秒）。また、推論時ではPCは

１回の推論に要した計算時間は約0.0028秒、RPi4は0.02秒で

あった。この結果から、RPi4などのエッジデバイスの性能

が向上してきているとはいえ、プロセッサやメモリの動作周

波数の差から処理能力が大きく異なることがわかった。これ

らから、エッジデバイスで学習を行う場合は計算量を削減す

るために、訓練データ数を減らすことは有効であると考える。

5. MLF-SCによる食品混入異物検出

次にスパースモデリングによる異常検知技術により、食品

に付着する人毛の検出を試みた。具体的には、スパースモデ

リングによる異常検知実装の一つであるMLF-SC学習モデ

ルを用い、分光画像データから豚挽肉に混入した異物（人毛）

の検出能力について評価した。

5.1　MLF-SCの概要

MLF-SCはディープラーニングの画像分類モデルの一つ

であるVGG16をベースとし、VGG16の中間層で抽出された

複数の特徴量を後段のスパースコーディング部の入力データ

として学習を行う（図13）。この中間層に抽出される特徴量

は入力画像そのものに含まれる特徴量と比較してノイズ等の

不要な情報が減少している。この特徴量をスパースコーディ

ングの辞書データとして学習に用いることで出力層での再構

成誤差を最小にすることが期待できる。

MLF-SCを用いた異常検知技術においてもこれまでと同

様に、正常なデータのみを訓練データとして使用する。出力

画像の再構成誤差が大きくなる部分を異常として検出する。

図13　MLF-SCのネットワークモデル

5.2　食品混入異物検出

MLF-SCの評価には、当場が開発した、任意の複数波長

の分光画像を撮像可能な多眼式分光イメージングカメラ7）
図12　PCとRaspberry Pi 4 B＋の計算時間の比較

図11　VSCとVAEの計算時間の比較

図10　手書き数字とVSC（訓練データ数＝50）の学習

モデルで推論した手書き数字の比較　　
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（図14）で撮影した、表面に人毛を付着させた豚挽肉のデー

タを用いた。この多眼式分光イメージングカメラにより、

617nm、697nm、796nm、900nmの４波長の分光画像を取得

し、画素ごとの分光データを求めた。MLF-SCはVGG16を

ベースとしていることからRGB画像（３チャネル画像）を

入力データとする仕様となっている。そのため、本研究では

４波長から３波長を抽出して学習モデルを作成し、最も異物

検出性能が良くなる３波長（697nm、796nm、900nm）の組

み合わせを選択した。次にこの異物検出用の学習モデル作成

の具体的な手順を示す。まず分光画像の豚挽肉部分をブロッ

ク領域に分割し、人毛が含まれないブロックを「正常」とし

て学習させて異物検出用学習モデルを作成する。次に人毛が

含まれるブロックをテストデータとして用いて性能を評価す

る（図15）。この手順にしたがい、50個の正常なデータを用

いて学習を行った後、人毛を含むブロックを用いて検出性能

の評価を行った。MLF-SCを用いて画素ごとに再構成誤差

を計算し、結果をヒートマップで表示した（図16）。異常が

ある部分は再構成誤差が大きくなる、すなわち、ヒートマッ

プで明るく表示される部分の位置が人毛部分と一致すること

から、MLF-SCを用いることで異物検出が可能であること

が確認できた。

6. リザバーコンピューティングによる異常検知技術

リザバーコンピューティングを用いて時系列データ向けの

異常検知技術の開発を行った。3.2節で述べたように、正常

音を正しく予測することができれば、正常音とは異なる異常

を検知することが可能となることから、ここではリザバーコ

ンピューティングの実装の一つであるESNを用いて、工場

の騒音を正常音としたときに正しく予測可能かを試みた。

6.1　ESNの概要

リザバーコンピューティングには様々な実装が提案されて

いるが、本研究では、図17に示すようなRNNをベースとし

たESNを用いた。RNNは時系列データを扱えるように出力

データを入力側のネットワークに戻す構造のニューラルネッ

トワークモデルであり、音声認識や自然言語処理などへ応用

されている。典型的なRNNでは中間層（隠れ層）が循環構

造となっており、時間的に過去の情報を保持しながら現在の

入力と組み合わせて学習を行うことで時系列データのパター

ンを学習することができる。リザバーコンピューティングは

中間層のニューロンの結合がランダム、かつ結合の重みが固

定されているRNNである。出力層の重みのみを学習すれば

よいため、計算量は少なくなり高速化を実現できる。

図17　ESNのネットワーク構造

6.2　ESNによる学習

多くの工場には、搬送や加工のための装置が多数設置され

ているが、外観から検知できない装置の異常はその動作音か

ら検知されることが多く、長年の経験を積んだ熟練作業者が

診断している。工場では複数の装置の動作音が重なり合い、

工場内全体の騒音となっている。すべての装置が異常なく動

作している時の騒音を予測するモデルを構築し、異常発生時
図16　MLF-SCによる豚挽肉の人毛の検出結果

（正常部分は暗く、異物部分は明るく表示）

図15　豚挽肉の訓練データの設定

（異物を含まない、正常ブロックのみを用いて学習）

図14　多眼式分光イメージングカメラ
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の騒音との差を評価することで異常を検知することができ

る。ここでは、ESNを用いて工場騒音を予測するモデルの

構築を行った。具体的には、工場騒音を１次元の音響信号と

してESNに入力し、出力層の重みはリッジ回帰を用いて学

習を行った。

6.3　工場騒音の予測

工場内においてサンプリング周波数48kHzで録音した5000

ステップ（データ長約104ミリ秒）の騒音データのうち、

2500ステップ（データ長約52ミリ秒）のデータを使用して学

習モデルを構築した。当該モデルを使用して2501ステップ～

5000ステップのデータを予測したところ、音の強度に差はあ

るが周期のずれがない信号を予測することができた（図18）。

この結果から、本学習モデルにより工場騒音を予測でき、工

場騒音と異なる音（異常音）を判別可能であることを確認し

た。ただし、ネットワークの重みを調整するための学習期間

において、背景音が不安定な非定常音である場合や、検出対

象となる異常音の周波数やデータ長、背景音との強度差など

も予測性能に大きく影響するため、ハイパーパラメータの調

整や訓練データのデータ長などを十分調整する必要がある。

図18　リザバーコンピューティングによる工場騒音の予測

7. おわりに

エッジデバイス上で学習・推論の機能を実現することを目

指して、少数の訓練データのみの学習で十分な予測性能を実

現可能なスパースモデリングやリザバーコンピューティング

による異常検知技術の開発を行った。スパースモデリング

ではVSCおよびMLF-SCの２通りの手法についてPythonで

コードを実装し、MNIST手書き文字の認識や食品に混入す

る人毛などの異物の検出に適用して性能評価を行った結果、

スパースモデリングを使用しない従来の方法に比較して少な

い訓練データで学習モデルを構築でき、さらにその性能が向

上することを明らかにした。また、リザバーコンピューティ

ングではESNをPythonでコードを実装し、50ミリ秒程度の

訓練データで工場騒音の予測が可能であることを確認した。

今後、半導体の設計技術や製造技術がさらに発展し、最先

端の計算機がクラウドサーバーに使われる一方で、工場で

稼働するIoTシステムや自動車のADAS（Advanced Driver-

Assistance Systems）などでは電力効率のよい小規模なエッ

ジデバイスが使われ続けるものと考える。人手不足を解消す

るための自動化、省人化のためにAIを実装するニーズはま

すます増加していくことから、本研究で取り上げた小規模な

エッジデバイスにAIを実装する技術はさらに重要になって

いくものと考える。今後、改良を進め、当該技術の適用事例

を広げるなど普及に向けた取り組みを進めていく。
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