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画像認識における説明可能なAIに関する研究
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抄　録

近年、深層学習をはじめとする人工知能（AI）技術が急速に発展し、様々な分野でAIを活用した研究が進め

られている。しかし、近年のAIは膨大な量のパラメータから構成される巨大なモデルであり、モデルの内部構

造が極めて複雑なため、なぜその認識や予測の結果が得られたのかという根拠を明確に説明できないという課題

を抱えている。このような背景からAIの予測根拠を人間が解釈可能な形で説明するための技術である説明可能

なAI（XAI: Explainable AI）に関する研究が注目されており、道内においてもAIを利用する企業から画像認識

AIの予測の根拠に関する相談が当場に寄せられている。そこで本研究では、農作物の画像から良品と不良品を

判別するAIモデルに対して画像認識AIの予測根拠を可視化して説明する、説明可能なAIの最新手法を適用する

ことでその有用性を検証したので報告する。
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Abstract

In recent years, artificial intelligence（AI）technologies, including deep learning, have developed

rapidly, and research utilizing AI has been advancing across a wide range of fields. However, modern AI

models are enormous systems composed of vast numbers of parameters, and their internal structures

are extremely complex, which makes it difficult to clearly explain the rationale behind their recognition

or prediction results. Against this background, research on explainable AI（XAI）—a technology that

enables AI predictions to be explained in a human-interpretable manner—has been attracting increasing

attention. In Hokkaido as well, our institute has received inquiries from companies using AI regarding the

rationale behind predictions made by image recognition systems. In this study, we report on the usefulness

of explainable AI by applying a state-of-the-art visualization method to elucidate the basis of image

recognition AI predictions in a model that classifies agricultural products as either good or defective.
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1. はじめに

近年、深層学習をはじめとする人工知能（AI）技術が急

速に発展し、AIを活用した自動化等の研究が様々な分野で

進められている。しかし、近年のAIは膨大な量のパラメー

タから構成される巨大なモデルであり、モデルの内部構造が

極めて複雑なため、なぜその認識や予測の結果が得られたの

かという根拠を明確に説明することができない。これは「ブ

ラックボックス問題」と呼ばれており、AIの信頼性の評価

を困難にすることから、企業や自治体におけるAIの導入を

妨げる要因になっている。

AIの開発では、収集したデータをAIに学習させてモデル

を構築する。この学習プロセスでは、認識や予測の対象に関

する「特徴」を入力データから自動的に学習するが、開発者

の意図していない特徴を学習してしまうことがあり、その場

合、期待した結果を出力しないなどAIモデルの性能は著し
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く低下する。このような現象は、特に実運用現場で取得され

るデータにはない手がかりとなる特徴が学習用データに存在

する場合に発生しやすい。例えば、農作物の良品と不良品を

画像から判別するAIの開発において、学習用データの撮影

に良品と不良品で異なる撮影台を用いるとAIは撮影台の違

いを学習してしまい、農作物の一部が腐敗しているかなどの

良品と不良品を判別するために必要な特徴を学習しない可能

性がある。この場合、実運用現場では学習時の撮影台の情報

を利用できないためAIの判別性能が極めて低くなる。AIの

予測の根拠を説明できない場合、開発プロセスにおいてこの

ようなモデル内部に潜む問題を発見することは容易ではな

い。

このような背景からAIの予測根拠を人間が解釈可能な

形で説明するための技術である、説明可能なAI（XAI:

Explainable AI）に関する研究が注目されている。XAIは、

AIが意図どおりに機能しているかを確認する上で重要な技

術であり、認識や予測の妥当性の確認や誤判断の原因特定に

よる性能改善など、AIの信頼性向上を可能にする。XAIは、

開発者にとって有用であるだけでなく、AIの導入にあたっ

てそのリスクと効果のより正確な評価を可能にすることか

ら、企業等がAIを自社の業務に導入する際の意思決定支援

にも有用である。ここ数年、AIを利用する企業から画像認

識AIの予測の根拠に関する相談が当場に寄せられているな

ど、AIの認識や予測の根拠を説明する技術開発の重要性が

高まっている。

そこで本研究では、農作物の画像から良品と不良品を判別

するAIモデルに対し、画像認識AIの予測根拠を可視化して

説明する最新手法を適用し、その有用性を検証したので報告

する。

本稿では、まず説明可能なAIの概要と本研究で使用した

アルゴリズムの詳細について述べる。次に当該アルゴリズム

の実装および具体的なAIモデルへの適用事例として、ブロッ

コリーの良品と不良品を判別するAIモデルへアルゴリズム

を適用した結果について述べる。最後に得られた予測根拠に

もとづくAIモデルの妥当性評価について述べ、本研究で使

用したアルゴリズムの有用性についてまとめる。

2. 画像認識モデルの予測根拠の可視化手法

本章では、まず説明可能なAIの概要と画像認識モデルの予

測根拠を可視化する一般的な手法について述べる。次に本研

究で使用した可視化アルゴリズムであるCRAFT1）（Concept

Recursive Activation Factorization for explainability）の

仕組みと特徴について説明する。

2.1　説明可能なAI

説明可能なAIは、AIモデルが出力した認識や予測の根拠

を人間が理解できる形で提示する技術であり、AIシステム

の透明性や信頼性の向上において重要な役割を果たしてい

る。画像認識モデルに対して説明可能なAIを適用する場合、

予測根拠を視覚的に可視化して提示する手法が広く知られて

おり、大きく分けて二種類のアプローチが存在する。

一つは、AIモデルが予測の際に画像内のどの領域を特に重

視したかを示す手法であり、通常はヒートマップ等による表

現を用いてモデルが着目したピクセルレベルの情報を視覚的

に提示する。代表的な手法としてGrad-CAM2）（Gradient-

weighted Class Activation Mapping）があり、これは畳み

込みニューラルネットワーク（CNN: Convolutional Neural

Network）の最後の畳み込み層の勾配情報を用いることで、

特定のクラス予測に最も影響を与えた画像領域をヒートマッ

プとして可視化するアルゴリズムである。図１にGrad-CAM

による可視化の例を示す。図１左の入力画像に対してAIモデ

ルが犬と認識した際に重視したと考えられる画像領域を図１

右のヒートマップの赤い領域として可視化している。

また、モデルの構造に依存せずに入力の重要度を推定でき

るLIME3）やSHAP4）のような汎用的手法を画像認識モデルに

適用することも可能であり、Grad-CAMと同様にクラスの予

測に最も影響を与えた画像領域を可視化することができる。

図１　Grad-CAMによる可視化

もう一つのアプローチは、モデルが予測の際に利用した「概

念」（concept）を示す手法である。ここでの概念とは、モデ

ルが学習により獲得した特定の視覚的パターンや特徴の集合

である。概念にもとづく手法では、これらの概念が予測にど

の程度寄与したかを示すことで、画像の「どこを重視したの

か」ではなく「何を重視したのか」という観点からモデル

の予測根拠を説明する。TCAV5）等の初期の手法では、開発

者があらかじめ定義した概念（例えば「縞模様」や「尖った

耳」等の特徴を持つ画像の集合）を用いて、特定の概念が予

測にどの程度寄与しているかを計算するが、次節で説明する

CRAFTのような新しい手法では、モデルの内部構造から自

動的に概念を抽出することが可能である。これにより開発者

が想定していない潜在的な概念の発見とそれにもとづく説明

が可能になった。
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2.2　概念に基づく可視化手法

本研究では、画像認識モデルの予測根拠を可視化する

手法としてFelらによって提案されたCRAFTを使用した。

CRAFTは、モデルが予測の際に重視した画像内の領域と概

念を同時に提示できる手法であり、従来の二種類のアプロー

チを統合することにより詳細な可視化を実現している。

CRAFTの基本的な考え方は、深層学習モデル内部の活性

化された中間層の出力を分析し、それらを人間が理解しやす

い概念へと分解することにある。具体的には、画像認識モデ

ル内部の最後の畳み込み層などの出力に対して多変量解析手

法の一種である非負値行列因子分解（NMF: Non-negative

Matrix Factorization）を適用することで、モデルの内部に

構築されている潜在的な概念を自動的に抽出する。このプロ

セスは再帰的に実行されるため、抽出された概念はさらに細

分化され、階層的な構造を持つ。例えば、動物の画像を分類

するモデルにおいて「動物」という上位概念は、「犬」「猫」

といった中位概念、さらに「犬の耳」「猫のひげ」といった

下位概念へと分解できる。このような階層的概念の利用は、

モデルが予測において重視した視覚的特徴に関する正確な理

解に有用である。

抽出された概念は、それぞれの概念に強く反応する代表的

な画像の集合として可視化される。これにより数値的な指標

ではなく、視覚的な情報からモデルが何を重視しているのか

を把握することができる。また、CRAFTはどの概念が予測

にどの程度寄与したのかを定量的に示すことができる。これ

らの寄与度の情報を用いることで、自動的に抽出された複数

の概念から重要なものを選択的に提示することが可能にな

る。さらにそれぞれの概念に関してモデルが着目した画像領

域を提示することが可能であり、以上をまとめると「予測で

重要なこれらの概念を画像のこの領域で利用した」という詳

細な説明を得ることができる。

図２および図３にCRAFTによる可視化の例を示す。画像

認識モデルが入力画像をウサギと認識した結果を分析した例

であり、図２では抽出された概念のうち予測に重要なものを

４つ示し、図３では各概念が入力画像のどの領域で利用され

たかをそれぞれ示している。最も重要とされた①の概念は、

ウサギの顔の概念と考えられ、ウサギの認識に利用すること

は妥当であると考えられる。また、①の概念は図３において

ウサギの顔の領域で利用されており、この点からもこの画像

認識モデルの妥当性を確認することができる。

本研究では、Pythonの深層学習フレームワークである

TensorFlowと説明可能なAIのライブラリであるXplique6）

を使用してAIモデルへCRAFTを適用するプログラムを実装

し、農作物の良品と不良品を判別する画像認識モデルに対し

て適用した。

3. 農作物不良品判別モデルへの可視化手法の適用

3.1　農作物不良品判別モデル

実装したプログラムの適用対象は当場で開発を進めてい

る、ブロッコリーの良品と不良品を判別する画像認識モデル

とした。本モデルは、ブロッコリーの画像から良品か不良

品かを判別する畳み込みニューラルネットワークモデルであ

る。モデルの学習には、選果場で判別された良品および不良

品を同一の撮像条件下で撮影した画像をそれぞれ約1,300枚

用いた（図４）。不良品は主として腐敗により花蕾（食用と

されるつぼみ）の一部が黒等に変色していた。学習後のモデ

図２　CRAFTにより抽出された概念

（予測に重要なものから順に①～④）

図３　予測において各概念が利用された画像領域

図４　ブロッコリー画像

左：良品、右：不良品（腐敗）
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ルはテストデータにおいて正解率90％以上の良好な性能を示

した。

3.2　可視化手法の適用

学習後のモデルの妥当性を評価するため、テストデータの

画像を不良品（腐敗）であると正しく判別した際の予測根拠

を、CRAFTを適用して可視化した。結果を図５および図６

に示す。図５に抽出された概念を予測に重要なものから順に

①～④で示し、図６に各概念が入力画像のどの領域で利用さ

れたかを示す。また、予測における概念の寄与率は、①の概

念が約80％となり、最も重要であるとされた。

図５の各概念を代表する画像から、①はブロッコリーの茎

および葉、②はブロッコリーの花蕾、③は容器、④は搬送台

のフレームの概念であると考えられる。今回の腐敗ブロッコ

リーは花蕾に変色が生じているものであり、本来であればモ

デルは②の概念を重視して腐敗の有無を判別すると想定され

る。しかし、予測における寄与度が最も高い概念は①の茎お

よび葉であり、想定と異なる。この不整合は、本来意図して

いる腐敗ブロッコリーの特徴をモデルが学習できていない可

能性を示唆している。

3.3　モデルの改善

予測根拠の可視化結果から、モデルが本来注目すべき腐敗

の特徴が現れる花蕾ではなく、茎や葉といった部位に注目し

て腐敗を判別していることが示唆された。この原因について

調査した結果、学習に使用した腐敗ブロッコリーの多くが撮

影日程の都合により収穫から日数の経過した個体であり、葉

や茎のしおれや乾燥など腐敗（花蕾の一部黒色化）とは直接

関係ない視覚的特徴を併せ持っていたことがわかった。これ

により、モデルは腐敗そのものではなく、しおれや乾燥といっ

た異なる特徴を学習してしまっていた可能性が高いと推測さ

れた。

この問題に対応するため、学習データを見直し、しおれや

乾燥等の特徴が強く現れていた画像約200枚をデータセット

から削除し、モデルの再学習を実施した。再学習後のモデ

ルに対して同様にCRAFTを用いた予測根拠の可視化を行っ

た。結果を図７および図８に示す。

図７は、再学習後のモデルから抽出された概念のうち予測

において重要とされた上位４つを示している。また、図８は

各概念が入力画像のどの領域で利用されたのかを可視化した

ものである。今回の結果では、最も寄与率の高かった概念①

がブロッコリーの花蕾に関する特徴を反映しており、図８に

おいても当該概念が花蕾の部位で利用されていることが確認

図７　抽出された概念

（予測に重要なものから順に①～④）

図８　予測において各概念が利用された画像領域図６　予測において各概念が利用された画像領域

図５　抽出された概念

（予測に重要なものから順に①～④）
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できた。このことから、再学習後のモデルは従来よりも適切

な視覚的特徴にもとづいて不良品を判別していると判断でき

る。

一方で、モデルの予測性能を示す正解率は再学習の前後で

大きな変化は見られず、いずれも90％以上であった。このこ

とは、モデルが誤った特徴に依存して予測していたとしても、

正解率といった性能指標からは学習の偏りに気づくことが難

しいことを示している。特に学習データのみに存在する特徴

が予測性能の向上に有利にはたらく場合は、見かけ上の性能

が高くなるため、正解率等の性能指標ではモデルの内部状態

を適切に評価することができない。

今回のように、概念にもとづく可視化手法を用いることで、

モデルが予測において「何を重視したのか」を詳細に分析す

ることが可能となり、正解率などの数値指標では見逃されや

すいモデル内部の問題やデータセットの偏りの発見に有効で

あることが確認された。

4. おわりに

本研究では、農作物の画像から良品と不良品を判別する

AIモデルに対し、画像認識AIの予測根拠を可視化して説明

する最新手法を適用し、その有用性を検証した。具体的には

モデルが判別に利用した視覚的「概念」と画像内における注

目領域を同時に可視化できるアルゴリズムであるCRAFTを

農作物判別モデルへ適用し、開発中のモデルが予測において

意図していない茎と葉の部位に着目していることを明らかと

した。その結果、データの見直しによる再学習を通じて、モ

デルが本来注目すべき花蕾の部位に基づいて判断するようモ

デルを改善することが可能となった。これは、予測根拠を可

視化することでモデル内部に潜在していた学習の不整合を把

握し、改善につなげることが可能であることを示している。

また、モデルの正解率は再学習の前後で大きく変化しな

かったことから、一般的な性能指標のみではモデルの妥当性

を評価しきれない場合があることも確認された。このこと

は、モデル開発において予測性能だけでなく、判断過程を可

視化・分析する重要性を示すものである。

一方、今回使用したCRAFTには技術的な制限も存在す

る。特に、概念の抽出に非負値行列因子分解（NMF）を使

用しているため、対象となるニューラルネットワークの出力

が非負値である必要がある。したがって、活性化関数として

ReLU等の非負性を持つモデルには適用できるが、Swish等

の負の値を取る関数を用いる最新のモデルにはそのまま適用

することができない。今後、NMFの代替として非負制約を

緩和した行列分解アルゴリズムを組み込むなど、より広範な

モデル構造へ適用可能な可視化手法の開発も検討する必要が

ある。

今後は、AIを使用する様々な研究開発において本研究の

知見を広く活用することで、より信頼性の高いAIモデルの

開発を図る予定である。
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