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抄　録

労働力不足の解消には、人間の複合的な判断力が求められる作業にも適用できる、高度な状態認識技術の開発

が不可欠である。状態認識技術の高度化の方法の一つとして、複数の異なる種類の情報を組み合わせるマルチ

モーダル化が挙げられる。

そこで本研究では、人間の五感のように、複数の異なるセンサから得られた情報を統合した状態認識の実現を

目指し、具体的なタスクとして加熱調理されている肉の焼き加減の認識に取り組んだ。加熱による肉の状態変化

を計測可能なセンサを選定し、加熱調理中のデータを計測する実験を行い、計測したデータを用いて長期短期記

憶ネットワークを学習することで、3段階の焼き加減の認識を行った。さらに、単一のセンサ情報のみを使用し

た場合と認識精度の比較を行うことで、マルチモーダル化の有用性を検証した。
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1.	 はじめに

労働力不足を解消するためには、より幅広い作業に適用可

能な自動化技術の開発が必要である。近年の深層学習の活用

により、判断基準の数値化や定量化が困難な認識タスクにつ

いても自動化が進みつつある。しかし、未だに人間にとって

は簡単でも、自動化が困難な認識タスクも多く存在する。例

えば製造品の不良検査において、表面のゆるやかな凹凸や質

感の違いなど画像上で判別することが困難な差異も、作業者

は目視と手で触れた感覚を組み合わせて判別できる。また農

作物の選果作業でも、撮影が困難な内部の腐敗に対して、作

業者は柔らかさや匂いをもとに判別することが可能である。

このように、人間は意識することなく五感を組み合わせて判

断することで、画像など単一の情報のみを判別に利用してい

る既存装置では検出困難な異常を認識することが可能であ

る。そこで本研究では、人間の五感のように複数の異なるセ

ンサから得られた情報を統合（マルチモーダル化）すること

で、単一のセンサ情報のみでは困難なタスクの状態認識を目

指す。複数種類の感覚にもとづいて判断する作業には、農作

物の選果作業、楽器の調整作業など様々あるが、特に身近な

作業として調理作業が挙げられる。調理作業は、加熱や泡立

てなど、視覚情報のみでは正確な状態把握が困難な場合が多

い。そのなかでも肉類の加熱調理においては、加熱が不十分

の場合は食中毒を引き起こす恐れがあり、過度に加熱すると

食感や風味を損なってしまうため、適切な加熱が求められる。

先行研究においても、外観から内部が衛生上十分に加熱され

たかを判断することは困難であることが示されている1）。一

方で人間が肉の加熱調理を行う際は、外観だけではなく音や

加熱面の温度、香り、蒸気や煙の発生など、複数の要素を統

合して焼き加減を判断している。

以上により、単一の情報では認識が困難な肉内部の加熱状

態の認識は、マルチモーダルセンシングを活用した状態認識

のタスクとして適切であると考え、本研究では加熱調理中の

肉の状態変化、すなわち焼き加減の認識に取り組んだ。

2.	 センサの選定と計測環境の構築

2.1　認識対象とする状態変化

肉の状態変化を認識するためには、まず変化がどのように

現れるかを把握した上でその変化を計測可能なセンサを選定

する必要がある。食肉とは家畜の筋肉であり、タンパク質、

水分、脂肪その他で構成される。したがって、加熱により肉
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に生じる変化は、主に脱水とタンパク質の変性である。

食肉に含まれるタンパク質は大まかに、糸状の構造をもつ

筋原線維タンパク質、結合組織を構成する筋基質タンパク

質、液体である筋漿タンパク質に分けられる。筋原線維タン

パク質の主成分であるミオシン・アクチンと、筋基質タンパ

ク質の主成分であるコラーゲンは加熱によって収縮し保水性

が下がる。この変化は肉の外観の変化のほか、水分の放出に

よる音の変化および蒸気の発生として知覚可能である。

肉の色は筋漿タンパク質であるミオグロビンに含まれる鉄

の状態に依存し、加熱により鮮やかな赤色になったのち、褐

色へと変化する2, 3）。熱源に接している面は内部よりも高温

となり、約140℃でメイラード反応を生じ、約160℃からカラ

メル化して褐色となり、約200℃で炭化して黒くなる。色の

変化は肉の外観から知覚できるうえ、メイラード反応やカラ

メル化では香気成分の発生を伴うため4）、肉周辺の匂いから

知覚できる。さらに、肉周辺の雰囲気温度は肉やフライパン

などの熱源の温度変化と関係していると考えられる。

2.2　センサの選定

先述のように、加熱により生じる変化は外観・湿度・温

度・音・匂いの変化として計測可能と考えられる。そこで、

これらの情報を計測するためのセンサ類を選定した。

外観の計測用と し て産業用カ メ ラ（acA1300-200uc・

Basler製）を、音の計測用としてマイク付きのWebカメラ

（C922n・Logicool製）を使用した。匂いを計測する装置と

して、特定のガスを検出するセンサではなく、複数種類の匂

い分子を検出可能な匂いセンサのうち、表１に示す３機種を

候補として選定のための予備実験を行った。焼く前の肉・適

度に焼いた肉・焦げた肉を常温の状態で密閉可能な保存袋に

入れ、匂いセンサの検出器を同じ袋に入れて10分程度放置し、

匂いを計測した。計測後、３状態の肉について計測値を比較

し、区別が可能であるかを検討した。

さらに、本実験では加熱中の匂いの変化を計測するため、

加熱時に発生する蒸気をセンサ素子に触れさせる必要があ

る。そこで、肉の加熱中に発生した湯気の温度を計測したと

ころ、60℃から70℃程度であった。

製品 検出素子 使用可能温度 区別

空気質センサ
/ Bosch製

金属
酸化物

-45 ～85℃ 〇

MSSセンサ
/ Qception製

感応膜 ０～55℃ △

nose@MEMS
/ I-PEX製

感応膜 ０～40℃ 〇

表１　匂いセンサの比較

予備実験の結果と各センサの使用可能温度を表１に示す。

表の結果をもとに、各状態の肉の区別が可能かつ本実験で

想定する70℃程度の環境下での使用が可能であることから、

本研究では空気質センサ（BME688・Bosch製）を採用した。

このセンサでは、匂いの変化を電気抵抗値［Ω］として計測

する。また、空気質センサには温度センサ・湿度センサが内

蔵されており、これらを利用して肉周辺の空間の温度と湿度

を計測する。

以上により、外観・湿度・温度・音・匂いから加熱中の肉

の状態変化を計測する機器を選定した。これらの機器を使用

し、実験環境を構築した。

2.3　実験環境の構築

肉の加熱調理中は油を含む蒸気や煙が発生し高温になるこ

とから、安全確保のためにドラフトチャンバー内に実験環境

を構築し、電気式のホットプレートを調理器具として使用し

た。ホットプレートの周辺に前節で選定した機器類を配置し、

図１に示す実験環境を構築した。図中の肉の内部温度を計測

する温度計（ステンレス保護管温度センサTR-0406・T＆D製）

は、焼き加減の正解値を得るためのリファレンスとしてのみ

使用し、状態認識の入力としては使用しなかった。

図１　構築した実験環境

－ 64－



北海道立総合研究機構工業試験場報告 №324

3.	 加熱中の肉の状態変化計測実験

構築した実験環境において、選定した装置により加熱調理

中の外観・湿度・温度・音・匂いの変化を計測する実験を

行った。加熱対象として、成分と大きさが均一な牛の成形肉

（サイコロステーキ、１辺約20mmの立方体）を使用した。

実験では、次の手順に沿って成形肉を加熱した。

①ホットプレートを十分に加熱する。

②半解凍状態の成形肉を５個ホットプレート上に並べ、う

ち１個に温度計のプローブを刺す。

③内部温度を確認しながら肉を加熱する。途中、全面に焼

き色がつくよう適宜焼き面を変更する。

④推奨加熱条件を満たした時刻を確認後、２個の肉を回収

して加熱を続ける。

⑤肉の内部温度が80℃を超え、肉全体が焦げて黒色になっ

たら加熱を終了する。

このような加熱実験を９回実施し、次章で実施する焼き加

減の状態認識に使用する学習データを収集した。なお、空気

質センサは１回の計測ごとに外気に30分当て、リフレッシュ

を実施した。また、空気質センサとリファレンス用温度セン

サのサンプリング周期は1sとした。

加熱前の肉、手順④で回収した肉、加熱終了後の肉を図２

に示す。図より、加熱により肉が収縮し、色が変化している

ことがわかる。また各状態の肉の重量を計測（10個平均）す

ると、加熱前は１個あたりの重量が9.9gであったのに対し、

手順④で回収した肉は１個あたり5.9g、加熱終了後の肉は１

個あたり3.4gと、加熱によって重量が減少した。

実験中の湿度と音の変化、匂いと内部温度の変化、さらに

実験初期・中期・後期の画像の一例を図３に示す。図上側の

音波形は、後述するハイパスフィルタで調理音以外のノイズ

を除去したものである。計測した音、湿度、映像を確認する

と、肉の焼き面を変えた時刻付近で音が変化し、湿度が一時

的に上昇したことから、肉が熱源に触れたことで収縮し水分

が放出された変化を計測したものと考えられる。また、匂い

センサの変化を確認すると、全９回の実験に共通して、加熱

開始後から値が減少し、肉全体が焦げた時刻付近で値が増加

する傾向が見られた。

以上の結果より、選定したセンサ類によって加熱による肉

の状態変化がデータとして計測された。このデータを使用し、

深層学習による状態変化の認識を行う。

図２　加熱前後の肉の外観比較

図３　音量と湿度の変化（上グラフ）、内部温度と匂いの変化（下グラフ）および撮影画像
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4.	 LSTMによる状態変化認識

4.1　認識対象の状態定義

牛の成形肉には内臓などの部位も含まれているため、食品

衛生の観点から内部温度70℃で３分またはそれに相当する温

度・時間の組み合わせによる加熱が推奨されている。本研究

ではこの推奨加熱条件にもとづき、認識対象とする状態を次

の３状態と定義した。

A．生焼け：肉が内部温度70℃で３分加熱される前の状態

B．適度焼け：肉が内部温度70℃で３分加熱された後、内

部温度80℃以下の状態

C．焼きすぎ：肉の内部温度が80℃以上の状態

計測した内部温度をもとに各時刻の状態をA ～ Cに分類

し、状態認識の真値とした。

4.2　学習データの作成

計測した実験データを用いて、学習データを作成した。計

測したデータのうち温度・湿度・匂い・音は１次元のデータ

であるのに対し、映像は１フレームあたり横1280画素・縦

1024画素の高次元情報を持つため、そのまま使用すると含ま

れる情報の大部分が映像の情報となり、他の１次元センサ

データの特徴が反映されない可能性がある。また、音データ

も計測した波形データのままでは特徴の把握が困難である。

そこで、音データと映像データの前処理を行い、それぞれ２

次元の特徴量を抽出した。

a）音データの前処理

スペクトログラム表示により調理中の音の変化を確認した

ところ、ドラフトチャンバーの換気音の音量が大きく、調理

中の音が隠れてしまっている状態が確認された。そこで、ま

ずはドラフトチャンバーの換気音である低周波数成分をハイ

パスフィルタで除去した。ハイパスフィルタ適用前後の音の

振幅（音量）の変化を図４に示す。

次に映像と音を合わせて確認したところ、肉から水分が放

出された際に音量と音の高さ（周波数成分）が変化する傾向

が観測されたため、音量に相当する振幅の二乗和（RMS）と、

音の周波数成分の特徴に相当するスペクトル重心の２つを特

徴量として抽出した。

b）映像データの前処理

2.2節で述べたように、加熱により肉は変色する。まず約

40℃で色が鮮やかな赤色になり、高温になると褐色、灰褐色

と変化する。また、肉の表面の焼き色は高温になると茶色か

ら黒色に変化していく。したがって、加熱による色の変化は

明度と彩度の変化に現れると考えられる。明度と彩度の変化

を計測するため、画像から肉の領域を抽出し、肉の色の彩度

と明度を特徴量とした。肉の領域抽出には物体検出用のAI

モデルであるYOLOv11を学習し使用した。YOLOにより検

出された肉の領域内について、各画素値をHSV表色系に変

換し、その平均値を算出することで明度と彩度を求めた。明

度と彩度を求める手順を図５に示す。

以上の処理によって抽出されたRMS・スペクトル重心・

明度・彩度と、計測した温度・湿度・匂いを組み合わせた７

次元のデータを使用して学習データを作成した。サンプリン

グ周期は1sに統一した。

4.3　LSTMネットワークの学習

状態認識には時系列データ処理に適した長期短期記憶

（LSTM: Long Short Term Memory）ネットワークという

ネットワークモデルを使用した。本研究ではTensorflowを

用いて２つのLSTM層と１つの全結合層からなるネットワー

クを実装した。１秒の状態認識に使用する区間（Lookback）

を直前の30秒分とし、９回分の実験データから約7000セット

の訓練データを得た。このデータを使用して、バッチサイズ

64、エポック数200としてLSTMネットワークの学習を行った。

実施した９回の実験のうち８回分を訓練データ、残り１回

分はテストデータとし、訓練データ・テストデータの全組み

合わせ９通りについて交差検証を行い、状態認識精度を評価

した。

図４　ハイパスフィルタによる排気音低減効果

図５　映像から特徴量を抽出する手順　
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4.4　LSTMによる状態認識結果

認識精度を評価する指標として、機械学習分野において

一般的に用いられる正解率（Accuracy）、適合率（Macro

Precision）、再現率（Macro Recall）、F1値（Macro F1）を

使用した。これらの評価指標はそれぞれ次の式⑴～⑷により

算出される。

� ⑴

⑵

⑶

⑷

式中のNは全データ数である。Lは認識する状態の個数で、

今回は4.1節で述べた３状態A ～ Cが認識対象であるため、L

＝3である。またTPl・FNl・FPlは認識結果の分類で使用さ

れる指標であり、認識対象A ～ Cのうちのある状態 l につい

て実際の状態と認識結果の組み合わせから次のように定義さ

れている。

・TPl：実際も認識結果も状態 l であるデータの数。

・FPl：実際は状態 l ではないが、状態 l と誤認識された

データの数。

・FNl：実際は状態 l だが、状態 l と認識されなかったデー

タの数。

評価指標を計算した結果、全体の正解率は0.83、適合率は

0.69、再現率は0.71、F1値は0.70であった。状態別（A・B・

C）に適合率、再現率、F1値を求めた結果を表２に示す。表

２より、状態別の評価指標を見ると、状態A（生焼け）の各

評価指標は全て0.9以上だが、状態B（適度焼け）は0.5以下

と低い値となっており、状態別の認識精度に差が生じていた。

さらに、図６に示す混同行列より、データ全体に占める状態

BとCの割合が低く、誤認識が起こりやすいのはAとB、Bと

Cの隣り合った状態同士が多いことがわかる。

これらの結果より、提案手法によって生焼け（状態A）は

精度よく認識されたが、適度焼けや焼きすぎを正しく認識す

るには改良が必要である。

4.5　マルチモーダル化の効果検証

次に、単一のセンサ情報のみを使用した場合と、提案手法

である複数種類のセンサ情報を統合して使用した場合の認識

精度を比較した。表３に、使用した入力情報別の正解率、適

合率、再現率、F1値の算出結果を示す。表３より、正解率、

適合率、再現率、F1値の全てにおいて、単一のセンサを使

用した場合よりも提案手法の分類精度が高い結果となった。

一方で、交差検証の試行別に求めた評価指標を標本として

優位水準を0.05とした有意差検定を行った結果、音データの

みの場合と提案手法の比較では有意差が認められたが、映像

のみ、空気質センサのみの場合と提案手法の比較では有意差

が認められなかった。したがって、映像データと空気質デー

タ（温度・湿度・匂い）については、他のセンサデータと組

み合わせることで認識精度が有意に向上したとは言えない。

そこで、他の視点から提案手法であるセンサ統合の効果に

ついて考察する。有意差が認められない原因として、データ

のばらつきが大きいことが考えられる。試行別に求めた正解

率の値を図７に示す。図７より、単一のセンサ情報のみの場

合では試行により値のばらつきが大きいが、提案手法では大

きな上下は見られない。表４に示す各評価指標の標準偏差を

比較すると、数値上でもセンサ統合により認識精度のばらつ

きが低減したことが確認できる。

また、状態別（A・B・C）に適合率、再現率、F1値を求

状態 適合率 再現率 F1値

全状態平均 0.697 0.713 0.703

A 0.962 0.924 0.942

B 0.371 0.476 0.417

C 0.759 0.738 0.749

表２　状態別の認識精度

入力 正解率 適合率 再現率 F1

全センサ 0.831 0.697 0.713 0.703

空気質 0.768 0.645 0.672 0.656

音 0.633 0.508 0.501 0.492

映像 0.801 0.667 0.653 0.660

表３　入力データ別の認識精度比較

図６　全データ統合時の混同行列
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めた結果を図８に示す。図８より、映像のみの場合では状態

B（適度焼け）の認識精度が低いが、他のセンサデータと統

合することで認識精度が向上したことが確認できる。

以上により、複数種類のセンサを統合（マルチモーダル化）

して状態認識を行うことで、各センサの不得意な領域を補い

合い、精度よく安定した状態認識が可能となった。

本結果より、マルチモーダル認識を活用することで、ネッ

トワークの構造を複雑にすることなく、認識精度の改善が可

能であることが確認された。マルチモーダル化の効果を向上

するには、データ統合時の重みの検討や、センサの選定が重

要である。今回は各センサデータのみでも一定の認識精度が

得られたため重みの検討は行わなかったが、極端に認識精度

が低いセンサデータが含まれていた場合は、重みを変える、

またはそのセンサデータを除外することを検討すべきであ

る。

5.	 おわりに

本研究では、人間のように複数種類の感覚にもとづく状態

認識の実現を目指し、加熱調理中の肉の焼き加減の認識をタ

スクとして設定した。調理中に計測した映像・湿度・温度・

音・匂いのデータを用いてLSTMネットワークを学習するこ

とで、83％の正解率で成形肉の焼き加減認識に成功した。

今回は調理作業を対象としたが、本研究で取り組んだ複数

種類のセンサデータを統合する状態認識手法は、農作物の選

果、プラントの異常点検など様々な作業における状態認識タ

スクに適用可能である。今後は、これら他の作業への適用や、

ロボットの強化学習への展開などに取り組む。
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図８　状態別の認識精度比較

入力 正解率 適合率 再現率 F1

全センサ 0.057 0.081 0.121 0.095

空気質 0.120 0.119 0.122 0.123

音 0.070 0.082 0.071 0.066

映像 0.088 0.127 0.090 0.097

表４　入力データ別の標準偏差比較

図７　試行別の正解率比較
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